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gCI

Geometry: 
AAGGL 2015 

BH 2016/06 
GvG 2017

Toric

Geometry:  
Textbooks†… 

(C)NLSM

  Prehistory   
     1980s 

— a mindmap

Diffeo-Data 
☛ H*(X, ℤ) 
☛ Chern classes 
☛ Chern numbers 
☛ Yukawa  κ[ωA,ωB,ωC] 
☛ p1[ωA]

Holo-Data 
☛ H*(X) 
☛ H*(X, T) 
☛ H*(X, EndT) 
☛ Yukawa  κ[ϕa,ϕb,ϕc]

Quantum Data 
☛ A-discriminants  
☛ B-discriminants  
☛ Yukawas 
☛ Instantons, GW

Semiclassical Data 
☛ phases  
☛ phase-boundaries

GLSM

Analysis 

☛ W 1993 
☛ MP 1995 
 …

BH 2016/11 
BH 2018/10?

“Avoid” the poles of Laurent polynomials

…✌"
#

Today!
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Non-Convex Mirror-Models

Prehistoric Prelude

Two-Part Invention

Laurent GLSM Fugue

Discriminant Divertimento
& a few Mirror Motets

3

“It doesn’t matter what it’s called, 
…if it has substance.”  

S.-T. Yau



Pre-Historic Prelude 
(Where are We Coming From?)



Classical Constructions

Pre-Historic Prelude
Complete Intersections 

Ex.: (x–x1)2+(y–y1)2+(z–z1)2 = R12 
   (x–x2)2+(y–y2)2+(z–z2)2 = R22 

Algebraic (constraint) equations 
…in a well-understood “ambient” (A)

Work over complex numbers 
…& incl. “infinity” (e.g., ℂℙn’s)

For hypersurfaces: X={p(x) = 0} ⊂ A 
Sections: [f(x)]X = [f(x) ≃ f(x) + %·p(x)]A 
Differentials:  [dx]X = [dx ≃ dx + %·dp(x)]A 
Homogeneity: ℂℙn = U(n+1)/[U(1)×U(n)] 

 r-cohomology on ℂℙn → U(n+1)-tensors
5

Just like gauge  
transformations

…with U(n) tensors

}



Why Haven’t We Thought of This Before?
Holomorphic+meromorphic systems
E.g:

Wall: κ111 = 2+3m, κ112 = 4, so (aJ1+bJ2)3 = [2a+3(4b+ma)]a2.
Also p1[aJ1+bJ2] = –88–12(4b+ma)… the same “4b+ma”
Thus Xm ≈  Xm+4γ for γ ∈  ℤ:   4 diffeo classes in the sequence

Are there deg(4,–1) holomorphic sections?!
Not on ℙ4×ℙ1,
but yes on Fm
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Meromorphic Minuet 
BH 

1606.07420
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Meromorphic Minuet 
…in well-tempered counterpoint

For 
 

Lefschetz hyperplane thm:
…and also for r = n (& then r >  n) since 
Chern class:

…so that:

For (n  = 4):

qi(abcd) := f i(jkl)
(abc �pd)(jkl)

q(x, y) := *f i(j15j2m*3)
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That is, the sequence of Hirzebruch 3-folds F (2)

m forms three diffeomorphism classes, [F (3)

3k] ˘ F (3)

0
, [F (3)

3k+1] ˘

F (3)

1
and [F (3)

3k+2] ˘ F (3)

2
, for 0 Õ k À Z; the first two of these have a Fano representative: F (3)
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ùP1

and F (3)
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2
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Fano. Again, we are primarily interested in the higher, non-Fano F (3)

m with mŒ3 cases, and explore their
differences from F (3)

0
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1
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below.

n = 4: The Chern class, the intersection and various Chern evaluation computations are as follows:e:Fmod4c
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As for lower n, all the Chern numbers (
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10

F. Hirzebruch, 1951
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Meromorphic Minuet 
…in well-tempered counterpoint

For 
 

The central (ϵ = 0) member of the family has all the requisite features:
Directrix: S ≔{+(x,y) = 0}, [S] = [H1] –m[H2] & Sn

 = –(n–1)m;
Extra anticanonicals:
Extra T-bundle valued:

qi(abcd) := f i(jkl)
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⇡
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%$
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1 if nÕ3

%$
((n*3)+nk) if n>4
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%
.

(0.7)

Corollary 1.1 (toric vs. bi-projective). The Hirzebruch n-folds defined by the central bi-
projective embedding

�
F

(n)
m

:= {x0 y0m+x1 y1m=0}
�
œ PnùP1 are isomorphic to the

toric varieties specified as

F
(n)
m

œ

4
P4 1
P1

m

5

⌫0 ⌫1 ⌫2 5 ⌫
n

⌫
n+1 ⌫

n+2

�
?

Fm

0 *1 1 5 0 0 *m
4 4 4 7 4 4 4
0 *1 0 5 1 0 *m
0 0 0 5 0 1 *1

Q
1 *4 1 1 5 1 0 0

Q
2

m*2 *m 0 5 0 1 1

Cox var’s
X

⇢
:= X

⌫⇢
,

and the explicit isomorphism of homogeneous and Cox coordinates respectively is given
as:

PnùP1 Œ (x0, x1,5 , x
n
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<
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⌅�
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y1m

* x1
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�
+ �

(y0 y1)m
âp(x, y)

⇧

X2 = x2, 5 X
n
= x

n
, X

n+1 = y0, Xn+2 = y1,

where
�
S :=

�
X1=0

��
œ F

(n)
m

is the hallmark directrix [28], parametrizes the MPCP-
desingularization, and has the maximally negative self-intersection S�…�S = *(n*1)m.

s(x, y) :=
⇠
x0
y1

m
*

x1
y1

m

⇡
+ �

(y0 y1)m
âp(x, y) =
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y1 ë 0, (� = +1);
4 4

*2 x1
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y0 ë 0, (� = *1).
(1.8)

1
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The central (ϵ = 0) member of the family has all the requisite features:
Directrix: S ≔{+(x,y) = 0}, [S] = [H1] –m[H2] & Sn

 = –(n–1)m;
Extra anticanonicals:
Extra T-bundle valued:
…exactly as computed for
All “extras” are lost for generic (ϵα ≠  0) deformations, 
resulting in the discrete deformation 

Also, explicit tensorial (residue) representatives 
→ can compute coupling ratios

qi(abcd) := f i(jkl)
(abc �pd)(jkl)

q(x, y) := *f i(j15j2m*3)
(abc pd)(i jm*15j2m*3)

xa 5 xd
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�
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Fm: at z ∈  ℙ1, ℙ4[1] = ℙ3; so Fm is a deg-m fibration of ℙ3 over ℙ1.
Xm is an anticanonical (CY) hypersurface in Fm.

Cohomology maps made explicit (m=3):

…in well-tempered counterpoint

9

KABC :=

Z

X

!A^!B^!C +
X

L

e�SX [J ;L](

Z

L

!A)(

Z

L

!B)(

Z

L

!C),

= ABC +
X

[L] 6=0

n[L]
e2⇡i

R
L J

1� e2⇡i
R
L J

(

Z

L

!A)(

Z

L

!B)(

Z

L

!C)

Xm 2

P4 1 4

P1 m 2�m

�(2,86)

�168

, m = 0, 1, 2, 3, . . . ; Xm ⇢ Fm 2

P4 1

P1 m

�
.

X1 2

P4 1 4

P1 1 1

�(2,86)

�168

TX1 ,! TP4 � TP1

��
X1

⇣ OA

�
1
1

�
�OA

�
4
1

���
X1

OA

� �5
�2

�
! OA

� �1
�1

�
�OA

� �4
�1

�
! OA ⇣ OX1

OA

� �1
�1

�
OA

�
3
0

�
�OA

�
0
0

�
OA

�
4
1

�
OA

�
4
1

���
X1

0. 0 {�(abc)}351 � {�}11 {�(abcd) i}702 H0(X1, OA

�
4
1

�
)

1. 0 0 0 0...
...

...
...

...

H0(X1, OA

�
4
1

�
) ⇡

�
{�(abcd) i}702

� �
{�(abc·fd) i}351 � {�·g(abcd) i}11

� 
104

OA

�
3

�4

�
OA

�
4

�1

�
OA

�
4

�1

���
F3

0. 0 0 H0(F3, OA

�
4

�1

�
)

1.
�
"ij�(kl)

(abc)

 35

3
0 0

2. 0 0 0...
...

...
...

OA

�
3

�4

�
OA

�
4

�1

�
OA

�
4

�1

���
F3

0. 0 0 gi(abcd) := "ij�(kl)
(abc·fd) (jkl)

1.
�
"ij�(kl)

(abc)

 35

3
0 0

2. 0 0 0...
...

...
...

1

KABC :=

Z

X

!A^!B^!C +
X

L

e�SX [J ;L](

Z

L

!A)(

Z

L

!B)(

Z

L

!C),

= ABC +
X

[L] 6=0

n[L]
e2⇡i

R
L J

1� e2⇡i
R
L J

(

Z

L

!A)(

Z

L

!B)(

Z

L

!C)

Xm 2

P4 1 4

P1 m 2�m

�(2,86)

�168

, m = 0, 1, 2, 3, . . . ; Xm ⇢ Fm 2

P4 1

P1 m

�
.

X1 2

P4 1 4

P1 1 1

�(2,86)

�168

TX1 ,! TP4 � TP1

��
X1

⇣ OA

�
1
1

�
�OA

�
4
1

���
X1

OA

� �5
�2

�
! OA

� �1
�1

�
�OA

� �4
�1

�
! OA ⇣ OX1

OA

� �1
�1

�
OA

�
3
0

�
�OA

�
0
0

�
OA

�
4
1

�
OA

�
4
1

���
X1

0. 0 {�(abc)}351 � {�}11 {�(abcd) i}702 H0(X1, OA

�
4
1

�
)

1. 0 0 0 0...
...

...
...

...

H0(X1, OA

�
4
1

�
) ⇡

�
{�(abcd) i}702

� �
{�(abc·fd) i}351 � {�·g(abcd) i}11

� 
104

OA

�
3

�4

�
OA

�
4

�1

�
OA

�
4

�1

���
F3

0. 0 0 H0(F3, OA

�
4

�1

�
)

1.
�
"ij�(kl)

(abc)

 35

3
0 0

2. 0 0 0...
...

...
...

OA

�
3

�4

�
OA

�
4

�1

�
OA

�
4

�1

���
F3

0. 0 0 gi(abcd) := "ij�(kl)
(abc·fd) (jkl)

1.
�
"ij�(kl)

(abc)

 35

3
0 0

2. 0 0 0...
...

...
...

1

={pa(j1⋯jm) xa yj1⋯yjm = 0}

q-maps now factor 
thru p-maps!

No longer independent 
in the Koszul resolution 

for Xm! %Source: Hq for codim = q+1 CYn-fold

BH 
1606.07420

Meromorphic Minuet 

qi(abcd) := f i(jkl)
(abc �pd)(jkl) (1)

q(x, y) := *f i(j15j2m*3)
(abc pd)(i jm*15j2m*3)

xa 5 xd

gj15jm*2)(y)
(2)

1

m=3 : O
A

� 3
*4
�

*p,,,,ô O
A

� 4
*1
� ⇢

F,,,,,,,,,ß O
A

� 4
*1
� 

F
m

0. 0 0 H
0(F

m
,Q)

1. {'i1(i2i3i4)
(abc) } 0 H

1(F
m
,Q)

2. 0 0 H
2(F

m
,Q)

4 4 4 4

'
i(jk15 k

M
) ˘ "

i(j
'
k15 k

M
)
, as U(n+1) Ì U(1)ùSU(n) irrep.

(0.1)

1

H
r(F (n)

m;✏,Z) ˘ H
r(Pn ùP1

,Z), for r<n, �
E
(F (n)

m;✏) = 2n. (0.1)

H
<(F (n)

m;✏,Z) ˘ H
<(Pn ùP1

,Z). (0.2)

c(F (n)
m;p) =

4 (1 + J1)n+1(1 + J2)2
(1 + J1 + mJ2)

5
J1n+1=0
J22=0

(1+J1)2
(1+J1+mJ2)

= 1+J1*mJ2 (0.3)

= (1+J1)n*1(1+J2)2(1+J1*mJ2) =
«
i

⇠
1 +

…
a

Q
a(x

i
)J

a

⇡
. (0.4)

q(x, y) := f
i(j15j

m*2 jm*15j2m*3)
(abc �p

d)(i j
m*15j2m*3)

x
a
x
b
x
c
x
d

g(j15j
m*2)(y)

(0.5)

SU(n+1)

1



To be precise:

10

KABC :=

Z

X

!A^!B^!C +
X

L

e�SX [J ;L](

Z

L

!A)(

Z

L

!B)(

Z

L

!C),

= ABC +
X

[L] 6=0

n[L]
e2⇡i

R
L J

1� e2⇡i
R
L J

(

Z

L

!A)(

Z

L

!B)(

Z

L

!C)

Xm 2

P4 1 4

P1 m 2�m

�(2,86)

�168

, m = 0, 1, 2, 3, . . . ; Xm ⇢ Fm 2

P4 1

P1 m

�
.

X1 2

P4 1 4

P1 1 1

�(2,86)

�168

TX1 ,! TP4 � TP1

��
X1

⇣ OA

�
1
1

�
�OA

�
4
1

���
X1

OA

� �5
�2

�
! OA

� �1
�1

�
�OA

� �4
�1

�
! OA ⇣ OX1

OA

� �1
�1

�
OA

�
3
0

�
�OA

�
0
0

�
OA

�
4
1

�
OA

�
4
1

���
X1

0. 0 {�(abc)}351 � {�}11 {�(abcd) i}702 H0(X1, OA

�
4
1

�
)

1. 0 0 0 0...
...

...
...

...

H0(X1, OA

�
4
1

�
) ⇡

�
{�(abcd) i}702

� �
{�(abc·fd) i}351 � {�·g(abcd) i}11

� 
104

OA

�
3

�4

�
OA

�
4

�1

�
OA

�
4

�1

���
F3

0. 0 0 H0(F3, OA

�
4

�1

�
)

1.
�
"ij�(kl)

(abc)

 35

3
0 0

2. 0 0 0...
...

...
...

OA

�
3

�4

�
OA

�
4

�1

�
OA

�
4

�1

���
F3

0. 0 0 gi(abcd) := "ij�(kl)
(abc·fd) (jkl)

1.
�
"ij�(kl)

(abc)

 35

3
0 0

2. 0 0 0...
...

...
...

1

KABC :=

Z

X

!A^!B^!C +
X

L

e�SX [J ;L](

Z

L

!A)(

Z

L

!B)(

Z

L

!C),

= ABC +
X

[L] 6=0

n[L]
e2⇡i

R
L J

1� e2⇡i
R
L J

(

Z

L

!A)(

Z

L

!B)(

Z

L

!C)

Xm 2

P4 1 4

P1 m 2�m

�(2,86)

�168

, m = 0, 1, 2, 3, . . . ; Xm ⇢ Fm 2

P4 1

P1 m

�
.

X1 2

P4 1 4

P1 1 1

�(2,86)

�168

TX1 ,! TP4 � TP1

��
X1

⇣ OA

�
1
1

�
�OA

�
4
1

���
X1

OA

� �5
�2

�
! OA

� �1
�1

�
�OA

� �4
�1

�
! OA ⇣ OX1

OA

� �1
�1

�
OA

�
3
0

�
�OA

�
0
0

�
OA

�
4
1

�
OA

�
4
1

���
X1

0. 0 {�(abc)}351 � {�}11 {�(abcd) i}702 H0(X1, OA

�
4
1

�
)

1. 0 0 0 0...
...

...
...

...

H0(X1, OA

�
4
1

�
) ⇡

�
{�(abcd) i}702

� �
{�(abc·fd) i}351 � {�·g(abcd) i}11

� 
104

OA

�
3

�4

�
OA

�
4

�1

�
OA

�
4

�1

���
F3

0. 0 0 H0(F3, OA

�
4

�1

�
)

1.
�
"ij�(kl)

(abc)

 35

3
0 0

2. 0 0 0...
...

...
...

OA

�
3

�4

�
OA

�
4

�1

�
OA

�
4

�1

���
F3

0. 0 0 gi(abcd) := "ij�(kl)
(abc·fd) (jkl)

1.
�
"ij�(kl)

(abc)

 35

3
0 0

2. 0 0 0...
...

...
...

1

={pa(j1⋯jm) xa yj1⋯yjm = 0}E.g:

“Linear algebra” 
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with the same classical topological data, but where the GW invariants di↵er even after the

integral change of basis [32].

Thus, because these latter type IIA vacua have heterotic duals we then have several

di↵erent non-perturbative completions of the same perturbative heterotic vacuum. It would

be interesting to explore how this can be understood from the heterotic perspective, which

we leave for future investigations.
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A Hirzebruch n-folds

We compute various useful properties of the 4-folds Fm appearing in (1.1), and then discuss

their analogues in di↵erent dimensions.

A.1 Anticanonical sections

As the configuration (1.1) embeds the Calabi-Yau 3-folds Xm as hypersurfaces in the 4-folds

Fm, it is imperative to prove that the anticanonical bundle of Fm does have holomorphic

sections from which to construct the defining equation of Xm.
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indicate that there are four separate cases:
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m = 0, 1: All the contributions are in the top, 0th cohomology row, and produce 105

equivalence classes of polynomials (see (A.10) below):
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with well-defined representatives over every point of P4
⇥P1.

m > 4: Now both contributions in the second row in (A.1) are nonzero, and fit into the

sequence:

0 ! H
0(Fm,Q)

d
�! H

1
�
A,O

�
3

2�2m

� � p
�! H

1
�
A,O

�
4

2�m

� � ⇢
�! H

1(Fm,Q) ! 0. (A.7)

This specifies H
0(Fm,Q) as the preimage by the di↵erential d-map of the “direct image”

within H
1
�
A,O

�
3

2�2m

� �
:

�
(j1···jm�2)
(abcd)

def
= "

i(j1
'
j2···j2m�3)
(abc pd)(i jm�1···j2m�3)

, (A.8a)

where '
(j1···j2m�4)
(abc pd)(jm�3···j2m�4)

= 0. (A.8b)

which are then used to construct the Laurent polynomials for H0(Fm,Q):

�(x, y) := "
i(j1

'
j2···j2m�3)
(abc pd)(i jm�1···j2m�3)

x
a
x
b
x
c
x
d

g(j1···jm�2)(y)
. (A.8c)

The form of the condition (A.8b) is dictated by the only covariant way to contract the tensor

representatives "ijf (k1··· k2m�4)
(abc) of H1

�
A,O

�
3

2�2m

� �
with pa(i1··· im) so as to produce the tensor
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coe�cients of a degree-
�

4
2�m

�
polynomial. The (m�1) degree-(m�2) generic P1-polynomials

g
(j1···jm�2)(y) allow separating the poles of �(x, y) to (m�1)(m�2) distinct locations and

minimally extends the “direct image” linear algebra methods [14, 21] to accommodate the

manifestly non-linear nature of the generalized complete intersections (1.1) for m > 3. It also

facilitates using the defining equation (A.11) of Fm to construct well-defined of holomorphic

sections (A.8c) of O
�

4
2�m

�
over Fm for every m > 0, the (A.12)-like equivalence classes of

which fully cover the explicit case-by-case constructions of the type given in Ref. [1].

The
�4+4

4

�
·
�(m�4)+1

1

�
= 70(m�3) constraints in the system (A.8b) must leave at least 105

of the
�3+4

4

�
·
�(2m�4)+1

1

�
= 35(2m�3) tensor coe�cients "ij'(k1··· k2m�4)

(abc) free to spanH
0(Fm,Q).

In fact, this is an undercount for m > 4, and the exact result is

H
0(Fm,K

⇤) = 105 + �
(4)
m , H

1(Fm,K
⇤) = �

(4)
m and �

(4)
m = ✓

m
3 15(m�3). (A.9)

The computation of �(4)
m is given in (A.27)–(A.28) below, for general Hirzebruch n-folds. Stated

di↵erently and for m > 4, 105 is the index of the cohomology map generated by multiplication

with the defining polynomial p(x, y) in degree-1 row of (A.1).

To summarize, we have obtained:

m H
0(Fm,Q), dimFm = 4 Number Sections

0 {�(abcd)(ij)/p(a'bcd)(ij)}
�4+4

4

��2+1
1

�
�
�3+4

4

��2+1
1

�
= 105 ordinary

1 {�(abcd) i/'(abc pd) i}
�4+4

4

��1+1
1

�
�
�3+4

4

��0+1
1

�
= 105 ordinary

2
{�(abcd)}

�4+4
4

��0+1
1

�
= 70 ordinary

{"
ij
'(abc pd)(ik)}

�3+4
4

��0+1
1

�
= 35 Laurent

3 {"
i(j
'
kl)
(abc pd)(ikl)}

�3+4
4

��2+1
1

�
= 105 Laurent

> 4
{"

i(j1
'
j2···j2m�3)
(abc pd)(ijm�3···j2m�3)

}
�3+4

4

�
(2m�3) Laurent

'
(i1··· i2m�4)
(abc pd)(i1··· i2m�4)

= 0 �
�4+4

4

�
(m�3) 6 105 + �

(4)
m

‡

‡
The “excess” number of sections �

(4)
m = ✓

m
3 15(m�3) is computed in (A.27)–(A.28).

(A.10)

A.1.2 Being well-defined

That holomorphic functions on Fm are equivalence classes of functions on A modulo p(x, y)-

multiples of OA
� �1
�m

�
-valued functions by (2.2) is crucial in showing that the above-obtained

Laurent polynomials are well-defined on Fm. Su�ce it here to show this for m = 2: Without

loss of generality, we may write the defining equation of F2 as

p(x, y) = p00(x) (y
0)2 + 2p01(x) y

0
y
1 + p11(x) (y

1)2 = 0. (A.11)

In turn, the second, �i(abcd) k-parametrized term in (A.5b) results in the Laurent polynomial

�(x, y) = "
ij
'(abc pd)(ik) x

a
x
b
x
c
x
d y

k

yj
= '(x)

⇣
p00(x)

y
0

y1
� p11(x)

y
1

y0

⌘
. (A.12a)

The vanishing (A.11) of p(x, y) on F2 implies that this is equivalent to:

�(x, y) = '(x)


p00(x)

y
0

y1
� p11(x)

y
1

y0
+ �

⇣
p00(x)

y
0

y1
+ 2p01(x) + p11(x)

y
1

y0| {z }
=0 on F2 owing to (A.11)

⌘�
. (A.12b)
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Meromorphic Minuet 
…in well-tempered counterpoint

gauge transformationAkin to the Wu-Yang 
magnetic monopole

m = 2



E.g:

The Koszul resolution complicated by factoring

The induced cohomology εf-map acts from Hq → Hq+1,
The q-sections may be “complicated” by denominator factor

…which serves only to spread out the poles (if so desired)
…the choice of which is the only factor not dictated by “linear algebra”

…also, can (and may need to) “un-contract” indices:  δ i
j → (yi/yj).

11

KABC :=

Z

X

!A^!B^!C +
X

L

e�SX [J ;L](

Z

L

!A)(

Z

L

!B)(

Z

L

!C),

= ABC +
X

[L] 6=0

n[L]
e2⇡i

R
L J

1� e2⇡i
R
L J

(

Z

L

!A)(

Z

L

!B)(

Z

L

!C)

Xm 2

P4 1 4

P1 m 2�m

�(2,86)

�168

, m = 0, 1, 2, 3, . . . ; Xm ⇢ Fm 2

P4 1

P1 m

�
.

X1 2

P4 1 4

P1 1 1

�(2,86)

�168

TX1 ,! TP4 � TP1

��
X1

⇣ OA

�
1
1

�
�OA

�
4
1

���
X1

OA

� �5
�2

�
! OA

� �1
�1

�
�OA

� �4
�1

�
! OA ⇣ OX1

OA

� �1
�1

�
OA

�
3
0

�
�OA

�
0
0

�
OA

�
4
1

�
OA

�
4
1

���
X1

0. 0 {�(abc)}351 � {�}11 {�(abcd) i}702 H0(X1, OA

�
4
1

�
)

1. 0 0 0 0...
...

...
...

...

H0(X1, OA

�
4
1

�
) ⇡

�
{�(abcd) i}702

� �
{�(abc·fd) i}351 � {�·g(abcd) i}11

� 
104

OA

�
3

�4

�
OA

�
4

�1

�
OA

�
4

�1

���
F3

0. 0 0 H0(F3, OA

�
4

�1

�
)

1.
�
"ij�(kl)

(abc)

 35

3
0 0

2. 0 0 0...
...

...
...

OA

�
3

�4

�
OA

�
4

�1

�
OA

�
4

�1

���
F3

0. 0 0 gi(abcd) := "ij�(kl)
(abc·fd) (jkl)

1.
�
"ij�(kl)

(abc)

 35

3
0 0

2. 0 0 0...
...

...
...

1

KABC :=

Z

X

!A^!B^!C +
X

L

e�SX [J ;L](

Z

L

!A)(

Z

L

!B)(

Z

L

!C),

= ABC +
X

[L] 6=0

n[L]
e2⇡i

R
L J

1� e2⇡i
R
L J

(

Z

L

!A)(

Z

L

!B)(

Z

L

!C)

Xm 2

P4 1 4

P1 m 2�m

�(2,86)

�168

, m = 0, 1, 2, 3, . . . ; Xm ⇢ Fm 2

P4 1

P1 m

�
.

X1 2

P4 1 4

P1 1 1

�(2,86)

�168

TX1 ,! TP4 � TP1

��
X1

⇣ OA

�
1
1

�
�OA

�
4
1

���
X1

OA

� �5
�2

�
! OA

� �1
�1

�
�OA

� �4
�1

�
! OA ⇣ OX1

OA

� �1
�1

�
OA

�
3
0

�
�OA

�
0
0

�
OA

�
4
1

�
OA

�
4
1

���
X1

0. 0 {�(abc)}351 � {�}11 {�(abcd) i}702 H0(X1, OA

�
4
1

�
)

1. 0 0 0 0...
...

...
...

...

H0(X1, OA

�
4
1

�
) ⇡

�
{�(abcd) i}702

� �
{�(abc·fd) i}351 � {�·g(abcd) i}11

� 
104

OA

�
3

�4

�
OA

�
4

�1

�
OA

�
4

�1

���
F3

0. 0 0 H0(F3, OA

�
4

�1

�
)

1.
�
"ij�(kl)

(abc)

 35

3
0 0

2. 0 0 0...
...

...
...

OA

�
3

�4

�
OA

�
4

�1

�
OA

�
4

�1

���
F3

0. 0 0 gi(abcd) := "ij�(kl)
(abc·fd) (jkl)

1.
�
"ij�(kl)

(abc)

 35

3
0 0

2. 0 0 0...
...

...
...

1

={pa(j1⋯jm) xa yj1⋯yjm = 0}

O
� �5
�2

�
�
�*

p

H
Hjq

O
� �4
m�2

�
?y"f

O
� �1
�m

�
H
Hj

q

�
�*

p
OA ⇣ OX

8
<

:

p 2 H
0(A,O( 1

m ))

"f  H
1(A,O( 4

2�m ))

q 2 H
0(Fm,O( 4

2�m ))

1

BH 
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Meromorphic Minuet 
…in well-tempered counterpoint

qi(abcd) := f i(jkl)
(abc �pd)(jkl) (1)

q(x, y) := *f i(j15j2m*3)
(abc pd)(i jm*15j2m*3)

xa 5 xd

gj15jm*2)(y)
(2)

1

H
r(F (n)

m;✏,Z) ˘ H
r(Pn ùP1

,Z), for r<n, �
E
(F (n)

m;✏) = 2n. (0.1)

H
<(F (n)

m;✏,Z) ˘ H
<(Pn ùP1

,Z). (0.2)

c(F (n)
m;p) =

4 (1 + J1)n+1(1 + J2)2
(1 + J1 + mJ2)

5
J1n+1=0
J22=0

(1+J1)2
(1+J1+mJ2)

= 1+J1*mJ2 (0.3)

= (1+J1)n*1(1+J2)2(1+J1*mJ2) =
«
i

⇠
1 +

…
a

Q
a(x

i
)J

a

⇡
. (0.4)

q(x, y) := f
i(j15j

m*2 jm*15j2m*3)
(abc �p

d)(i j
m*15j2m*3)

x
a
x
b
x
c
x
d

g(j15j
m*2)(y)

(0.5)

1



Beyond the (Theorem of) Wall

New Prospects
The (mod 4) periodicity is not so crazy after all…

For ϵ ≠  0: Fm;ϵ.
Since Fm;ϵ are both rigid, / = ℂϵ / reparam. = 2 pts.

…but all Fm;ϵ, for [m (mod n)] are in the same diffeomorphism class

Something similar 
happens with the 
CY(n–1)-folds Xm 

12

However, for ϵ = 0 this is Fm;0 (has a C·C = – m).

3.3 Discrete Deformations and Extremal Transitions

As detailed in Appendix A.4, it is known that Hirzebruch surfaces of the same homotopy

type, Fm ⇡ Fm+2, may be regarded as discrete deformations of one another [14, 28]. The

direct computations in Appendix A are consistent with our conjecture A.1, that the same is

true of the straightforward higher-dimensional generaliz
ations,

F (n)
m 2

"
Pn 1

P1 m

#
, 2 6 n 2 Z and 0 6 m 2 Z. (3.10)

It therefore seems natural to propose:

Conjecture 3.1 (i) The deformation spaces of Calabi-Yau 3-folds Xm and Xm+n which

belong to an [m (mod n)]-periodic sequence of configurations
the periodicity of which stems

from the same periodicity of a Hirzebruch n-fold factor in the embedding space are “separate

but infinitesimally near,” so that Xm is a discrete deformation of Xm+n.

(ii) In any classical field theory, the use of
Xm and Xm+n should produce identical m

odels;

however, some quantum e↵ects may well distinguish Xm from Xm+n; see Section 4.

In particular, the ou
tward emanating sequences

of configurations i
n Figure 1, of which

the

upper right-hand
side quarter (X0, X4, X8, X12 . . .) is repr

oduced in (3.5), are in fact sequences

of such discrete deformations; see Figure 2. The local Kodaira-Spencer deformation spaces

Xm+3n
etc.

Xm+2n
Xm+n
Xm

Figure 2. The Calabi-Yau (n�1)-folds Xm+kn ⇢ F (n)

m+kn
that are di↵eomorphic to each other for

k = 0, 1, 2, . . . have deformation spaces that are infinitesimally close; see Conjecture 3.1.

H
1(Xm, T ), H

1(Xm+n, T ), H
1(Xm+2n, T ), H

1(Xm+3n, T ) etc., are of course all isomorphic.

Whether this isomorphism extends to the entire moduli spaces as suggested in Figure 2, to

the cohomology rings defined by the Yukawa couplings, and also away from the “large radius

limit,” remains an open question. As the
Calabi-Yau 3-folds Xm+kn are all di↵eomorphic for

k = 0, 1, 2, . . . and so represent the same real manifold, the situation in Figure 2 would imply

that the complex structure moduli space of such real manifolds comes in disjoint “sheets,”

possibly distinguishable by quantum e↵ects as per Con
jecture 3.1; see also Section 4.
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qi(abcd) := f i(jkl)
(abc �pd)(jkl)

q(x, y) := *f i(j15j2m*3)
(abc pd)(i jm*15j2m*3)

xa 5 xd

gj15jm*2)(y)
�
x0 y0m + x1 y1m≠́≠≠≠≠≠Ø≠≠≠≠≠≠̈

:= âp(x,y)

= *
…
↵

✏↵ �p↵(x, y)
�
= F (n)

m;✏ À
⌧Pn 1
P1 m

�

1

0



The Big Picture 
(What are We Doing?)



The previous example and its cousins:
h
1,1 = 2, h2,1 = 86; dimH

1(Xm,EndT ) = 188

P4[5]
"
P4 1 4

P1 0 2

#

"
P4 1 4

P1 1 1

#"
P4 1 4

P1 2 0

#

"
P4 1 4

P1 3 �1

# "
P4 1 4

P1 4 �2

#

"
P4 1 4

P1 5 �3

#"
P4 1 4

P1 6 �4

#

"
P4 1 4

P1 7 �5

#

XA :M(��
0) 6' XG : fM4(��

4)

XF :M(��
4)

XE : fM3(��
3)

XD :M(��
3)

XB :M(��
1) 6' XK : fM5(��

5)

XJ :M(��
5)

XC :M4(��
2)

⇡

⇡

⇡ · · ·

⇡ · · ·

⇡

⇡

· · · ⇡

· · · ⇡

⇡ ⇡

⇡ ⇡

⇡
⇡

↵↵↵

! !

!

!
!!

$

$

$

Figure 1. The m ! m+1 mod 4 (denoted by “!”) “pinwheel” network of various models related in
this article; see Section

s:gCIss:gCIs
2. Other indicated relations are: “↵” denotes a conifold transition, while “$”

denotes a flop transition; “⇡” denotes (classical) di↵eomorphism as per a theorem by C.T.C. Wall. The
indicated non-isomorphisms (“ 6'”) are based on disagreement in a preliminary low-degree instanton
number count. f:PinWheel

In Section
s:WP+Ts:WP+T
3, we show that these Calabi-Yau 3-folds Xm are K3-fibrations over P1, and

that these Fm are m-twisted P3 fibrations over P1 — the 4-dimensional analogues of Hirze-

bruch surfaces. The Fm are then alternatively realized as toric desingularizations of weighted-

projective spaces P4
(1:1:m:m:m) and corresponding toric 4-folds, in which the Calabi-Yau hy-

persurfaces Xm for m > 3 have non-reflexive and non-convex N -polytopes3 equipped with

extended M -polytopes that include Laurent monomials. These equivalences indicate a need

for a corresponding generalization of the Kreuzer-Skarke catalogue [2] so as to include at

least the non-reflexive polytopes as they occur corresponding to sequences such as (
e:Seqe:Seq
1.1); they

also permit the complementary use of di↵erent techniques in the analysis of such 3-folds, and

help showing that some of these non-reflexive polytopes are related to other, more routinely

studied examples by a somewhat novel “flop” transition.

Finally, we summarize our results and their implications in Section
s:Codas:Coda
4, and initiate a

study of the quantum cohomology of such 3-folds by computing a few lowest-degree instanton

numbers (Gromov-Witten invariants). Technical details are deferred to the appendices: in

particular, Appendix
s:gTESSs:gTESS
A collects the details of all requisite cohomology computations for the

sequence of 3-folds (
e:Seqe:Seq
1.1), Appendix

s:Hirzs:Hirz
B explores the complete intersection and the toric de-

scriptions of Hirzebruch varieties in 2 and 3 dimensions — exemplifying in a simpler setting

the use of non-reflexive polytopes; Appendix
s:Others:Other
C exhibits a few similar periodic sequences.

3
To avoid confusion between which polytope is the “original” and which is the polar/dual, we indicate

by N -prefix the (polar) polytope supported by the toric fan that defines the underlying toric variety, and by

M -prefix the polytope that determines the sections of the anticanonical bundle over the toric variety by the

enclosed M -integral points.
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(�1, 4) (�1, 3) (�1, 2)

z51 z0z41 z20z
3
1
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z30z
2
1 z40z1 z50
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3 y52y

�1
4 y23y

2
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2

6664
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0 0 2 2
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3

7775


P3 4

P1 2

�=

2

κABC and p1[ωA] vary 
in a (mod 4) fashion

⌦
[P5||2, 4]

1

⌦

⌦[P4
(1:1:1:1:4)||8]

1
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↵

P4
(1:1:1:1:2)[6]

1



The previous example and its cousins:
h
1,1 = 2, h2,1 = 86; dimH

1(Xm,EndT ) = 188
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Figure 1. The m ! m+1 mod 4 (denoted by “!”) “pinwheel” network of various models related in
this article; see Section

s:gCIss:gCIs
2. Other indicated relations are: “↵” denotes a conifold transition, while “$”

denotes a flop transition; “⇡” denotes (classical) di↵eomorphism as per a theorem by C.T.C. Wall. The
indicated non-isomorphisms (“ 6'”) are based on disagreement in a preliminary low-degree instanton
number count. f:PinWheel

In Section
s:WP+Ts:WP+T
3, we show that these Calabi-Yau 3-folds Xm are K3-fibrations over P1, and

that these Fm are m-twisted P3 fibrations over P1 — the 4-dimensional analogues of Hirze-

bruch surfaces. The Fm are then alternatively realized as toric desingularizations of weighted-

projective spaces P4
(1:1:m:m:m) and corresponding toric 4-folds, in which the Calabi-Yau hy-

persurfaces Xm for m > 3 have non-reflexive and non-convex N -polytopes3 equipped with

extended M -polytopes that include Laurent monomials. These equivalences indicate a need

for a corresponding generalization of the Kreuzer-Skarke catalogue [2] so as to include at

least the non-reflexive polytopes as they occur corresponding to sequences such as (
e:Seqe:Seq
1.1); they

also permit the complementary use of di↵erent techniques in the analysis of such 3-folds, and

help showing that some of these non-reflexive polytopes are related to other, more routinely

studied examples by a somewhat novel “flop” transition.

Finally, we summarize our results and their implications in Section
s:Codas:Coda
4, and initiate a

study of the quantum cohomology of such 3-folds by computing a few lowest-degree instanton

numbers (Gromov-Witten invariants). Technical details are deferred to the appendices: in

particular, Appendix
s:gTESSs:gTESS
A collects the details of all requisite cohomology computations for the

sequence of 3-folds (
e:Seqe:Seq
1.1), Appendix

s:Hirzs:Hirz
B explores the complete intersection and the toric de-

scriptions of Hirzebruch varieties in 2 and 3 dimensions — exemplifying in a simpler setting

the use of non-reflexive polytopes; Appendix
s:Others:Other
C exhibits a few similar periodic sequences.

3
To avoid confusion between which polytope is the “original” and which is the polar/dual, we indicate

by N -prefix the (polar) polytope supported by the toric fan that defines the underlying toric variety, and by

M -prefix the polytope that determines the sections of the anticanonical bundle over the toric variety by the

enclosed M -integral points.
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Beyond the (Theorem of) Wall

New Prospects
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κABC and p1[ωA] vary 
in a (mod 4) fashion
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Segue to toric (re)incarnation:
Beyond the (Theorem of) Wall

New Prospects

15
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H
r(F (n)

m;✏,Z) ˘ H
r(Pn ùP1

,Z), for r<n, �
E
(F (n)

m;✏) = 2n. (0.1)

H
<(F (n)

m;✏,Z) ˘ H
<(Pn ùP1

,Z). (0.2)

c(F (n)
m;p) =

4 (1 + J1)n+1(1 + J2)2
(1 + J1 + mJ2)

5
J1n+1=0
J22=0

(1+J1)2
(1+J1+mJ2)

= 1+J1*mJ2 (0.3)

= (1+J1)n*1(1+J2)2(1+J1*mJ2) =
«
i

⇠
1 +

…
a

Q
a(x

i
)J

a

⇡
. (0.4)

q(x, y) := f
i(j15j

m*2 jm*15j2m*3)
(abc �p

d)(i j
m*15j2m*3)

x
a
x
b
x
c
x
d

g(j15j
m*2)(y)

(0.5)

SU(n+1)

�(K‰k

F
(n)
m;✏
) :=

n…
i=0

(*1)i dimH
i(F (n)

m;✏,K‰k) = (1*2k)
(n * 1)!

n*2«
j=0

⇠
n(k+1)*j

⇡
(0.6)

Corollary 1.1 (toric vs. bi-projective). The Hirzebruch n-folds defined by the central bi-
projective embedding

�
F

(n)
m

:= {x0 y0m+x1 y1m=0}
�
œ PnùP1 are isomorphic to the

toric varieties specified as

F
(n)
m

œ

4
P4 1
P1

m

5

⌫0 ⌫1 ⌫2 5 ⌫
n

⌫
n+1 ⌫

n+2

�
?

Fm

0 *1 1 5 0 0 *m
4 4 4 7 4 4 4
0 *1 0 5 1 0 *m
0 0 0 5 0 1 *1

Q
1 *4 1 1 5 1 0 0

Q
2

m*2 *m 0 5 0 1 1

Cox var’s
X

⇢
:= X

⌫⇢
,

and the explicit isomorphism of homogeneous and Cox coordinates respectively is given
as:

PnùP1 Œ (x0, x1,5 , x
n
; y0, y1) ;ô

<
X1 =

⌅�
x0
y1m

* x1
y1m

�
+ �

(y0 y1)m
âp(x, y)

⇧

X2 = x2, 5 X
n
= x

n
, X

n+1 = y0, Xn+2 = y1,

where
�
S :=

�
X1=0

��
œ F

(n)
m

is the hallmark directrix [28], parametrizes the MPCP-
desingularization, and has the maximally negative self-intersection S�…�S = *(n*1)m.

s(x, y) :=
⇠
x0
y1

m
*

x1
y1

m

⇡
+ �

(y0 y1)m
âp(x, y) =

T+2 x0
y1m

y1 ë 0, (� = +1);
4 4

*2 x1
y0m

y0 ë 0, (� = *1).
(1.7)

1



Consider S2 ≃ ℙ1:

Need at least two 
(complex) coordinates:

Match (the exponents) near the equator: (+1)N = (–1)S

Symmetry: ξ→λ+1ξ and η→λ–1η, with λ ∈  ℂ* = (ℂ ∖ {0})
Explicitly: λ = ei(α+iβ) = e–β ·eiα = (real) rescaling · phase-change

Toric Geometry

16

x h

1

x h

1

(–1)

(+1)
x h

x +1 = h�1 (+1)N = (�1)S

1

“thickened” S1 usual gauge  
transformation

Two-Part Invention



More complicated examples: S2 ⨯ S2 
An entire 2nd sphere at every point of 1st 
Orthogonal ↔ linearly independent 
Top-dim cones ↔ coord. patches 
2-dim (enveloping) polytope ↔ (ℂ) 2-dim. geometry

Now: Hirzebruch (ℂ) surface, F1.' 
“Slanting” (0,–1) → (–m,–1) the bottom  
vertex (& two cones) encodes the “twist” 
… Fm = m-twisted ℙ1-bundle over ℙ1. 
…and so on: 4 textbooks worth…

…focusing exclusively on convexity… 
wherein “cone” is defined to mean %  
strongly convex rational polyhedral cone

17

Toric Geometry

sp
an

nin
g p

oly
go

n

Two-Part Invention



Fan Encoding
The fan encodes the space
…but also its symmetries:

Each primitive generator ↦ (Cox) coordinate
Read off cancelling relations

Defines two independent (gauge) symmetries
a GLSM w/gauge-invariant Lagrangian
and | ground state ⟩ where KE = 0 = PE
& (quantum) Hilbert space on it

18

x1 x2

x3

x4

1~vx1 + 1~vx2 + 0~vx3 + 0~vx4 = 0 (x1, x2, x3, x4) ' (l1 x1, l1 x2, l0 x3, l0 x4)

1

1~vx1 + 1~vx2 + 0~vx3 + 0~vx4 = 0 (x1, x2, x3, x4) ' (l1 x1, l1 x2, l0 x3, l0 x4)

1

0~vx1 + m~vx2 + 1~vx3 + 1~vx4 = 0 (x1, x2, x3, x4) ' (l0 x1, lm x2, l1 x3, l1 x4)

1

0~vx1 + m~vx2 + 1~vx3 + 1~vx4 = 0 (x1, x2, x3, x4) ' (l0 x1, lm x2, l1 x3, l1 x4)

1

m=1

Two-Part Invention



Laurent GLSM Fugue  
(&  new-fangled  Toric Geometry)

A Generalized Construction of 
Calabi-Yau Models and Mirror Symmetry 

arXiv:1611.10300 
+ any day now…

BH



2-torus in the Hirzebruch surface Fm:
“Anticanonical” (Calabi-Yau, Ricci-flat) hypersurface in Fm

Toric description

20

spanning polytope

The star-triangulation of the spanning polytope 
defines the fan of the underlying toric variety

BH
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( 2
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%

(1,�1)
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(�?
F3
)�

�F3
�

�

N � Conv(��F3
)

N � �
�
F3

?

The integral lattice points (indicated by black dots in the left-hand half of Figure
f:fmXtf:fmXt
??)

determine polynomials according to the association in (
e:Fmpte:Fmpt
??):

�
�
F3

3 ~vi
(
e:Fmpte:Fmpt
??)
7! zi 7!

2Y

i=0

(zi)
~vi·~ma+1

, for ~ma 2 �F3 . (0.1) e:monMap

1

—Proof-of-Concept—
Laurent GLSM Fugue

& Non-Convex Mirrors arXiv:1611.10300

non-convex  
for m>2

(…also, non-Fano for m>2) …matched to the bi-
projective embedding 
via diffeo & holo data



integral
hull

�
�

?
F3
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�
2
3 ,�1

�

⇢

Conv(�?
F3
) 6= �

?
F3

Co
nv
(�

?
F3
)r

�
?
F3

Figure 2. Candidates for the Newton polytope of F3: the (
e:pDStde:pDStd
3.10)-polar of �

?
F3

(mid-left) and its
integral hull (far left), the (

e:pDStde:pDStd
3.10)-polar thereof (bottom right) and its di↵erence from �

?
F3

(top-right). f:MF3std

1. turns the non-convex vertex ⌫3 2 �
?
F3

into a second interior N -integral point;

2. happens to be the spanning polytope �
?
P2
(1:1:3)

rather than �
?
F3
;

3. contains the additional simplex [(0, 1), (�3,�1), (�1, 0)] 6⇢ �
?
F3
.

This then defines a “defect” of (
e:pDStde:pDStd
3.10):

[(0, 1), (�3,�1), (�1, 0)] :=
��
�

?
F3

���� r�
?
F3
, (3.13) e:nonInv

as depicted on the right-hand side of Figure
f:MF3stdf:MF3std
2. This “defect” is a direct consequence of the

strong foundational reliance/dependence on convexity in toric geometry [10–15], which we

must refine to adequately address non-compact polytopes such as �?
F3
.

3.2.1 Refinement
s:ref

To be precise, we seek a twin definition of a class of VEX 8 polytopes (including all convex

polytopes and more), and a trans-polar operation9, such that:

A. For every convex polytope P , the trans-polar equals the polar: P
O = P

�. To avoid

confusion, “PO” will denote the trans-polar of P , while “P �” remains its standard polar,

as defined and computed with either version of (
e:pDStde:pDStd
3.10) [10–15].

B. The trans-polar of every VEX polytope is also a VEX polytope.

C. For every VEX polytope P , (PO)O = P .

To extend the “ordinary” operation of polar (
e:pDStde:pDStd
3.10), we define the trans-polar operation by

the following (iterative-recursive) cone-by-cone procedure:

8
“VEX” is left over from lopping [con] o↵ of convex ; it also stands for: (Flippancy alert!): VEX=Vexing,

Elemental, Xenogamic (fertilizing a flower by pollen of a genetically di↵erent plant)—yes, it is self-referential,

having “vex” in the explanation of itself. Alternatives: STEM=Star-Triangulable, Elemental & Mirroring;

STEN=Star-Triangulable, Elemental & Nominal;
9
The phrase trans-polar sounds as beyond polar , and it is indeed more widely applicable than (

e:pDStde:pDStd
3.10)-polar;

alternatives: rec-polar or r-polar , for “recursive-polar”? Or, FW-polar for “face-wise polar”? Or, i-polar for

“iteratively polar”? The only other term I can think of that alludes to being opposite (as in polar opposites)

is “antipodal,” but the “antipodal map” is already a standard and widely known term.

– 10 –

The Newton polytope (polar of spanning polytope):
The “standard”  
polar polytope 
is non-integral
The “standard”  
polar of the 
polar is not 
the spanning 
polytope that 
we started with
Is no good  
for mirror  
symmetry

21
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polytopes and more), and a trans-polar operation9, such that:
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�. To avoid
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as defined and computed with either version of (
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B. The trans-polar of every VEX polytope is also a VEX polytope.
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To extend the “ordinary” operation of polar (
e:pDStde:pDStd
3.10), we define the trans-polar operation by

the following (iterative-recursive) cone-by-cone procedure:
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“VEX” is left over from lopping [con] o↵ of convex ; it also stands for: (Flippancy alert!): VEX=Vexing,

Elemental, Xenogamic (fertilizing a flower by pollen of a genetically di↵erent plant)—yes, it is self-referential,

having “vex” in the explanation of itself. Alternatives: STEM=Star-Triangulable, Elemental & Mirroring;

STEN=Star-Triangulable, Elemental & Nominal;
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The phrase trans-polar sounds as beyond polar , and it is indeed more widely applicable than (
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3.10)-polar;
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“iteratively polar”? The only other term I can think of that alludes to being opposite (as in polar opposites)
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(Δ★)°:={u : ⟨u ,v⟩≥  –1, v ∈  Δ★}

%

← global

Laurent GLSM Fugue



)%

The standard Newton polytope:
specifies allowed monomials

The so-defined 2-tori 
are all singular @(0,0,1)

…as each monomial has 
at least an x1 factor, so 
f(x) = x1·g (x)
The extension 
corresponds to 
Laurent monomials:

22
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∂gij(X(x))
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d
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There must 
be more to 

this!

*→ “intrinsic limit”
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Figure 27. Two non-VEX examples: a star-simplex (over a face) contains an integral point in its
interior (left), inside a 0-vertex edge (right); both induce the trans-polar to have non-integral vertices f:2more

integral point in its interior — although there is no integral point in the interior of the

polytope. Consequently, the degree of this star-simplex is not a unit (it equals 3); this

renders one of the vertices in the trans-polar polytope (far left in Figure
f:2moref:2more
27) non-integral and

so not a VEX polytope. The polytope on the mid-right of Figure
f:2moref:2more
27 has both (1) a facet that

is collinear with the origin, so the cone over it is collapsed, and (2) an integral point in the

relative interior of a face of a cone; this also causes one of the vertices of the trans-polar to

be non-integral.

Generalizing from these and similar examples (most not shown herein) produced the list

of requirements given in Claim
c:listc:list
3.1, page

c:listc:list
12.

B.5 The trans-polar construction

The trans-polar Construction
C:tPC:tP
3.1 (p.

C:tPC:tP
11) has not been exhibited in use, as it is generally

more detailed and laborious than the use of the cone-shift vectors (
e:vShe:vSh
3.15). Indeed, given

the position of the vertices of the trans-polar polytope and the placement and orientation

of the so-translated dual cones — which then form the (inner/outer for positive/negative)

opening cones of PO; as per Claim
C:vShC:vSh
3.2, this seems to su�ce to completely reconstruct P

O.

For illustration, we show however the direct results of Construction
C:tPC:tP
3.1 for F3 in Figure

f:F3cstf:F3cst
28.

Note that polar to each vertex ⌫⇢ 2 �
? by itself is not a facet ✓ ⇢ (�?)O, but the (n�1)-plane
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Figure 28. A direct application of Construction
C:tPC:tP
3.1 to �
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F3
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)O is plotted at half its size f:F3cst
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The oriented Newton polytope (trans-polar of spanning polytope):
Construction (trans-polar)

Decompose Δ⭑ into 
convex faces θi;
Find the (standard) polar  
(θi)° for each (convex) face
(Re)assemble parts dually 
to (θi ∩ θj)° = [(θi)°, (θj)°] 
with “neighbors”

Agrees with standard (if obscure?) constructions…
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Figure 27. Two non-VEX examples: a star-simplex (over a face) contains an integral point in its
interior (left), inside a 0-vertex edge (right); both induce the trans-polar to have non-integral vertices f:2more

integral point in its interior — although there is no integral point in the interior of the

polytope. Consequently, the degree of this star-simplex is not a unit (it equals 3); this

renders one of the vertices in the trans-polar polytope (far left in Figure
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27) non-integral and

so not a VEX polytope. The polytope on the mid-right of Figure
f:2moref:2more
27 has both (1) a facet that

is collinear with the origin, so the cone over it is collapsed, and (2) an integral point in the

relative interior of a face of a cone; this also causes one of the vertices of the trans-polar to

be non-integral.
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For illustration, we show however the direct results of Construction
C:tPC:tP
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28.
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“Normal fan”  
- “outer” [GE]  
- “inner/local” [CLS]

Dual cones ↦ 
inside opening 
vertex-cones [?BH]

tra
ns

-po
lar'
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i
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k

PPPPPPPPi
choice of S[dg; G(g)]
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S X�!X

 
; dS[X; g(x)] = 0

| {z }
classical physics

; dqu.g(x) = 0.
| {z }
quantum stability

1

—Proof-of-Concept—

The oriented Newton polytope:
is star-triangulable → a toric space
differs from its convex hull by “flip-folded” simplices

Associating coordinates to corners:
SP: x1 = (–1,0), x2 = (1,0), x3 = (0,1), x4 = (–3,–1)
NP: y1 = (–1,4), y2 = (–1,–1), y3 = (1,–1), y4 = (1,–2)

Expressing each as a monomial in the others:
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K3 in Hirzebruch 3-folds, “cornerstone” mirrors:

The Hilbert space & interactions restricted by the symmetries
Analysis: classical, semi-classical, quantum corrections…
…in spite of the manifest singularity in the (super)potential

25

BH

and two of {y1, · · · , y6} need to be set to 1, corresponding vertices removed from �
?
F3

and

�
?
FO

3
, respectively, and so blow-down F3 and F

O

3
respectively so as to obtain:
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[6]. (4.48c) e:nomK3L3

correspond to eliminating a di↵erent half of the “extension” vertices from �F3 .

The monomials in the polynomials (
e:nomK3e:nomK3
4.46) themselves correspond to vertices of the poly-

topes �F3 = �
?
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3
and �FO

3
= �

?
F3
. Corresponding then to the limits (

e:nomK3Le:nomK3L
4.48), we can omit the

corresponding terms, obtaining two pairs of minimal mirror polynomials:e:nK3Min1
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each pair are the transpose of each other:
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To swap the geometric and quantum symmetry, we should consider
�
(
e:nK3-1e:nK3-1
4.51) , (

e:nK3-2e:nK3-2
4.52)/Z3

�
for

a mirror pair, using the indicated Z3-action.

We note that the ratio of the sizes of the geometric and the quantum symmetry groups

equals the ratio of the degrees of the polytopes:

|G|

|Q|
=

3·24

8
= 9 =

d(�F3)

d(�?
F3
)
=

54

6
. (4.53) e:RelRat

Indeed, the same holds also for (�Fm ,�
?
Fm

), where the ratio of the quantum and geometric

symmetries in (
e:mirrorF3e:mirrorF3
3.48) is 2, and equals the ratio of degrees of the Newton and the spanning

polytopes (
e:F3:4,8e:F3:4,8
3.48d). Both in the 2-dimensional and in the 3-dimensional computation, it was

crucial for this equality that the Newton polytope contains negative-degree parts.

On the other hand, dropping µ3, µ6 2 �F3 , the paire:nK3Min2
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8
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8
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x
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1
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x
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2

x3
2 P3
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y
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2 P3
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?
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The maximal phase symmetry of (
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8
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8
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8
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8
,
1

8
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metry,” the discrete subgroup of the P3
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min1W (FO

3 ) = b1 y
3
3 + b2 y

3
5 + b3

y82
y3 y5

+ b4 y
8
1 2 P3

(3:5:8:8)[24], (4.49b)

corresponds to (4.48a)-(4.48b), i.e., to �?
F3

r ⌫5 and �F3 r {µ4, µ6}. Straightforward com-

putation shows that the generic polynomials (4.49) are transversal, and the polynomials in

each pair are the transpose of each other:

(4.49a) & (4.49b) ) min1W(F3) =

2

6664

0 0 0 8

0 0 8 0

3 0 �1 0

0 3 �1 0

3

7775
= min1WT (FO

3 ). (4.50)

Following the prescription of Ref. [16], the maximal phase symmetry of (4.49a) is Z3⇥Z8⇥Z24,

generated by g1 := (Z3:
1
3 ,

2
3 , 0, 0), g2 := (Z8: 0, 0, 0,

1
8) and g3 := (Z24:

1
24 ,

1
24 ,

1
8 , 0). Then,

9(g2+g3) = (Z8 :
3
8 ,

3
8 ,

1
8 ,

1
8) generates the “quantum symmetry,” the discrete subgroup of the

P3
(3:3:1:1) projectivization, leaving a Z3 ⇥ Z24 geometric symmetry generated for example as:
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Analogously, the maximal phase symmetry of (4.49b) is Z3 ⇥ Z8 ⇥ Z24, generated by gO1 :=

(Z3: 0, 0,
1
3 ,

2
3), gO2 := (Z8:

1
8 , 0, 0, 0) and gO3 := (Z24: 0,

1
24 ,

2
3 ,

2
3). Then, gO2 + 5gO3 = (Z24 :

1
8 ,

5
24 ,

1
3 ,

1
3) generates the “quantum symmetry,” the discrete subgroup of the P3

(3:5:8:8) projec-

tivization, leaving a Z3 ⇥ Z8 geometric symmetry generated for example as:
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⇢GO=Z8 ⇥ Z3,
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(4.52)

To swap the geometric and quantum symmetry, we should consider
�
(4.51) , (4.52)/Z3

�
for

a mirror pair, using the indicated Z3-action.

We note that the ratio of the sizes of the geometric and the quantum symmetry groups

equals the ratio of the degrees of the polytopes:

|G|

|Q|
=

3·24

8
= 9 =

d(�F3)

d(�?
F3
)
=

54

6
. (4.53)

Indeed, the same holds also for (�Fm ,�
?
Fm

), where the ratio of the quantum and geometric

symmetries in (3.48) is 2, and equals the ratio of degrees of the Newton and the spanning

polytopes (3.48d). Both in the 2-dimensional and in the 3-dimensional computation, it was

crucial for this equality that the Newton polytope contains negative-degree parts.

On the other hand, dropping µ3, µ6 2 �F3 , the pair
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putation shows that the generic polynomials (4.49) are transversal, and the polynomials in

each pair are the transpose of each other:

(4.49a) & (4.49b) ) min1W(F3) =

2

6664

0 0 0 8

0 0 8 0

3 0 �1 0

0 3 �1 0

3

7775
= min1WT (FO

3 ). (4.50)
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Indeed, the same holds also for (�Fm ,�
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), where the ratio of the quantum and geometric

symmetries in (3.48) is 2, and equals the ratio of degrees of the Newton and the spanning

polytopes (3.48d). Both in the 2-dimensional and in the 3-dimensional computation, it was

crucial for this equality that the Newton polytope contains negative-degree parts.
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(�?
E
2

)
˝ predictably has a fractional point:

(G.8) e:UOSNP

The cone over the deg = 2 facet ‹( ✓
<
) may be subdivided by introducing the N-lattice vector ⌫

<
= (*1, 0, 0),

and replacing the deg =2 facet ✓
<

by the convex “tent”

✓
<
ô [(0, 1, 0), (0, 0, 1), (*1, 0, 0)] ‰ [(0, 1, 0), (*1, 0, 0), (*2,*1,*1)] ‰ [(*1, 0, 0), (0, 0, 1), (*2,*1,*1)], (G.9)

whereupon the polar of the so-“repaired” spanning polytope (�?
öE
2

)
˝
= (�?

öE
2

)
÷
= �öE

2

becomes the M-integral
truncation of (�?

E
2

)
˝:

(G.10) e:UONSPc

These two convex polytopes each other’s standard (
e:pStde:pStd
3.14)-polar and they are both reflexive polytopes. This

is analogous to the case of the Hirzebruch 3-fold F (2)

1
, for which both the spanning polytope and the Newton

polytope are reflexive and each other’s polar.

G.6 Reduced Re-Triangulation Transitions

Three dimensions affords some possibilities not existing in two dimensions. One of those involves sub-
divisions distinct triangulations. Consider for example a 3-dimensional polytope including the vertices
{(*1,*1, 0), (*1, 0, 0), (0,*1, 0), (0, 0, 1)}. This rectangle may be subdivided in at least two distinct ways, as
depicted in Figure

f:rTf:rT
55. The subdivision on the left-hand side of Figure

f:rTf:rT
55 provides for two facets,

[(0, 0, 1), (*1,*1, 0), (0,*1, 0)] and [(0, 0, 1), (*1, 0, 0), (*1,*1, 0)], (G.11)
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[(0, 0, 1), (*1,*1, 0), (0,*1, 0)] and [(0, 0, 1), (*1, 0, 0), (*1,*1, 0)], (G.11)
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(�?
E
2

)
˝ predictably has a fractional point:

(G.8) e:UOSNP

The cone over the deg = 2 facet ‹( ✓
<
) may be subdivided by introducing the N-lattice vector ⌫

<
= (*1, 0, 0),

and replacing the deg =2 facet ✓
<

by the convex “tent”

✓
<
ô [(0, 1, 0), (0, 0, 1), (*1, 0, 0)] ‰ [(0, 1, 0), (*1, 0, 0), (*2,*1,*1)] ‰ [(*1, 0, 0), (0, 0, 1), (*2,*1,*1)], (G.9)

whereupon the polar of the so-“repaired” spanning polytope (�?
öE
2

)
˝
= (�?

öE
2

)
÷
= �öE

2

becomes the M-integral
truncation of (�?

E
2

)
˝:

(G.10) e:UONSPc

These two convex polytopes each other’s standard (
e:pStde:pStd
3.14)-polar and they are both reflexive polytopes. This

is analogous to the case of the Hirzebruch 3-fold F (2)

1
, for which both the spanning polytope and the Newton

polytope are reflexive and each other’s polar.

G.6 Reduced Re-Triangulation Transitions

Three dimensions affords some possibilities not existing in two dimensions. One of those involves sub-
divisions distinct triangulations. Consider for example a 3-dimensional polytope including the vertices
{(*1,*1, 0), (*1, 0, 0), (0,*1, 0), (0, 0, 1)}. This rectangle may be subdivided in at least two distinct ways, as
depicted in Figure

f:rTf:rT
55. The subdivision on the left-hand side of Figure

f:rTf:rT
55 provides for two facets,

[(0, 0, 1), (*1,*1, 0), (0,*1, 0)] and [(0, 0, 1), (*1, 0, 0), (*1,*1, 0)], (G.11)
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Figure 54: The spanning polytopes (left-hand side) with a deg = 2, 3, 4 facet (shaded red), subdivided at ⌫r =
(*1, 0, 0), which produces a convex, flat and concave “tent,” respectively; the Newton polytopes are pictured on
the right-hand side: the deg = 2 case is clipped, the deg = 4 case extended by the (⌫r)˝-facet.
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convex

(*1,*1, 0)

(0,*1, 0)

(*1, 0, 0)

(0, 0, 1)

re-triangulation,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,ô diffe
ren

ce

non-co
nvex

Figure 55: Introduction of non-convexity by re-triangulation and removal of one (here) or more (in general)
simplices that are not adjacent to the lattice origin. In the present example, this does not change the vertex set
of the polytope; by contrast, the construction (

e:re3sube:re3sub
4.7) does introduce a new, non-convex vertex. f:rT

while the one on the right-hand side defines the facets

[(0, 0, 1), (*1, 0, 0), (0,*1, 0)] and [(*1, 0, 0), (*1,*1, 0), (*1, 0, 0)]. (G.12)

The former is manifestly convex, while the latter is not. Although the vertices remain the same, the
difference between the two subdivisions is seen (Figure

f:rTf:rT
55, right) to be the simplex

[(0, 0, 1), (*1,*1, 0), (0,*1, 0), (*1, 0, 0)], (G.13)

which is not adjacent to the internal lattice point (0, 0, 0), and does not belong to the star-triangulation of
the polytope using the right-hand side subdivision.

Owing to this, and unlike in two dimensions, a 3- or higher-dimensional polytope (more precisely, its
vertex-set) may have different star-triangulations, some of which fully convex, others not.

In addition, we have also seen two slightly different kinds of non-convexity (and without self-crossing
faces) in 3-dimensional polytopes:

1. “Regular” saddle-points, such as ⌫
1

in �?
F (2)

3

; see (
e:3FmTVe:3FmTV
4.1). The trans-polar of such a non-convex vertex is

a regular (not self-crossing) facet, such as ⇥
1
œ �F (2)

3

.

2. “Irregular” saddle-points, such as ⌫
2

and ⌫
3

in �?
F (2)

3

; see (
e:3FmTVe:3FmTV
4.1). The trans-polar of such a non-convex

vertex is a flip-folded (self-crossing) facet, such as ⇥
2
,⇥

3
œ �F (2)

3

.

In combination with flip-folded (self-crossing) faces such as ⇥
2
,⇥

3
œ �F (2)

3

on the right in Figure
f:3F3f:3F3
19, a

complete enumeration of all forms of non-convexity is less straightforward in general than the case-by-
case remarks made herein, but also well beyond the scope of this proof-of-concept note.
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⌫
4
= (*1,*2,*1)

Figure 51: The spanning polytope of the double fibration (
e:3FmP1ke:3FmP1k
G.2), displayed with (m, k) = (1, 1), (2, 1), (1, 2); the

upper half remains unchanged, ⌫
1
= (1, 0, 0), ⌫

2
= (0, 1, 0) and ⌫

3
= (0, 0, 1). The P1

fiber is spanned by {±⌫
2
}, and

is fibered over {⌫
1
, ⌫

3
,*⌫

1
, ⌫

4
} spanning the base-Fm. f:P1m’Fm

In fact, the same is true of the s-skewed versions of this toric variety:

�?
Fm,k;s

⌫
0

⌫
1

⌫
5

⌫
2

*⌫
2

⌫
3

⌫
4

fiber-1 0 1 *1 0 0 0 *m
fiber-2 0 0 *s 1 *1 0 *k

base 0 0 0 0 0 1 *1

�
1

2(k*s)*ms *k+ms *k 0 0 s s
�
2

*2 0 0 1 1 0 0

�
3

*2*s 1 1 s 0 0 0

x
0

x
1

x
2

x
3

x
4

x
5

x
6

(G.3) e:3FmsP1k

The above candidate Mori vectors were found using Mathematica’s command NullSpace. Their combina-
tions

õ�
1
=

1

s
�

�
1
+ as(ms*k)�

2
+ (ms*k)�

3
) = (0,*m, 0,ms*k, 1, 1) and

õ�
2
=

1

s
�

�
1
* ks�

2
+ k�

3
) = (m, 0, 0,*k, 1, 1)

(G.4)

seem like interesting choices, but I’m still not clear what the (positivity, integrality) defining condition
(complementing nullity) of the Mori vectors ought to be. This triple sequence of polytopes exhibits

⌫
1

⌫
2

(*⌫
2
)

⌫
3

⌫
4

⌫
5

⌫
1

⌫
2

(*⌫
2
)

⌫
3

⌫
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⌫
5

⌫
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⌫
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(*⌫
2
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⌫
3

⌫
4

⌫
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⌫
1

⌫
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(*⌫
2
)

⌫
3

⌫
4

⌫
5

Figure 52: The spanning polytope of the skewed double fibration (
e:3FmsP1ke:3FmsP1k
G.3), displayed for k = 3, s = 3 and

m = 0, 5 , 3: most of the polytope remains unchanged, ⌫
1
= (1, 0, 0), ⌫

2
= (0, 1, 0) and ⌫

3
= (0, 0, 1). The P1

fiber,
spanned by {±⌫

2
}, is fibered over the (k; s)-skewed base-Fm, with the spanning polytope {⌫

1
, ⌫

3
, ⌫

5
, ⌫

4
}, where

⌫
4 := (*m,*k,*1) and ⌫

5 := (*1,*s, 0). f:3FmsP1k

several different types of non-convexity. Even while keeping s = 3 and k = 3 fixed,
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Discriminant Divertimento

The (super)potential:

The possible vevs

concluding comments, while computational details are collected in the appendices. While

this proof-of-concept paper illustrates the various toric geometry techniques by focusing on

Hirzebruch n-folds [5] and their Calabi-Yau hypersurfaces, more general examples and further

details may be found in the companion paper [23].

2 The gauged linear sigma model

Recent work [1, 5] has shown that there are significant merits to constructing Calabi-Yau

algebraic varieties at least some of the defining equations of which contain Laurent monomials,

and that standard methods of algebraic geometry and cohomological algebra can be adapted

to compute the requisite classical data. For applications in string theory and its M- and

F-theory extensions, it is desirable to find a world-sheet field theory model with such target

spaces.

For well over two decades now, the standard vehicle to this end is Witten’s gauged linear

sigma model (GLSM) [8, 24, 25], where fermionic integration leaves a potential for the scalar

fields of the general form:

U(xi,�a) =
X

i

��Fi

��2 + 1

2e2

X

a

Da
2 +

1

2

X

a,b

�̄a �b

X

i

Q
a
iQ

b
i |xi|2, (2.1a)

Da = �e
2
�X

i

Q
a
i |xi|2 � ra

�
. (2.1b)

Here �a is the scalar field from the a
th gauge twisted-chiral superfield, xi and Fi are respec-

tively the scalar and auxiliary component fields from the i
th “matter” chiral superfield Xi,

Q
a
i is the charge of the i

th chiral superfield with respect to the a
th

U(1) gauge interaction,

and the ra are the contributions from the Fayet-Iliopoulos terms. In supersymmetric theories

and especially when acting on chiral superfields, gauge groups are typically complexified and

the GLSM naturally has U(1,C) ' C⇤ actions — which are the “torus actions” in the toric

geometry of the space of ground-states in the GLSM.

2.1 Laurent superpotentials

For illustration, consider the GLSM models with the superpotential3

W (X) := X0 · f(X), (2.2a)

f(X) :=
2X

j=1

✓ nX

i=2

�
aij X

n
i

�
X

2�m
n+j + aj X

n
1X

(n�1)m+2
n+j

◆
, (2.2b)

where m,n > 1 are integers and X0 is the chiral superfield that in some ways serves as a

Lagrange multiplier; we focus on n = 2, 3, 4, but generalizations are straightforward. Such

superpotentials are strictly invariant with respect to the U1(1)⇥U2(1) gauge symmetry with

3This is not the most generic superpotential but the natural generalization of Fermat-like potentials for the

current class of models we are considering; see below.
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— PLEASE, DO NOT CIRCULATE —

0
!
= Da :=

e2

2

⇣ n+2X

i=0

Qa
i |xi|2 � ra

⌘
; (1.5d)

0
!
=

��|Q(x)|�i
��2 := 2

X

a,b

�̄a

✓ n+2X

i=0

Qa
iQ

b
i |xi|2

◆
�b. (1.5e)

The subsystem (1.5a)–(1.5c) defines the base-locus of the superpotential function (1.3), while

the constraint (1.5d) is known as the “moment map.” The last constraint (1.5e) restricts the

hxi to be “Qa
i -orthogonal” to the h�i, serves as an hxi-dependent mass term for the �a’s and

a h�i-dependent mass term for the X’s, as well as an X-� interaction term.

1.1 A Laurent GLSM

In particular, we focus on the m,n > 0 sequence of superpotentials considered in Ref. [6],

which we rewrite as follows:

W (X) := X0 · f(X), (1.6a)

f(X) :=
2X

j=1

✓�
a1j X

nm
n+j

�
Xn

1 +
nX

i=2

aij X
n
i

◆
X 2�m

n+j , (1.6b)

which is U(1)⇥U(1)-gauge invariant with the charges

X0 X1 X2 · · · Xn Xn+1 Xn+2

Q1 �n 1 1 · · · 1 0 0

Q2 m�2 �m 0 · · · 0 1 1

(1.7)

Upon restricting to the lowest (scalar) component fields Xi| = xi, this format makes it clear

that f(x) is an (xn+1, xn+2) 2 C2-family of Fermat n-tics in (x1, · · · , xn) 2 Cn, where the

di↵ering and xnm
n+j-dependent i = 1 term “m-twists” this fibration over the base (xn+1, xn+2) 2

C2. If (x1, · · · , xn) and (xn+1, xn+2) are separately projectivized, f(x) = 0 defines an m-

twisted fibration of Pn�1[n] over P1, which indeed describes a “geometric” phases of the GLSM

with the superpotential (1.6). The particular case with m = 2 and n = 4 is the “Example 2”

in Ref. [7], which is then generalized by the GLSM sequence with the superpotentials (1.6).

The vanishing of (1.1) is equivalent to the system of constraints (1.5), which for the

superpotential (1.6) becomes:

0
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n
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; (1.8a)
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◆
; (1.8b)

0
!
= nx0 x
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◆
, i = 2, · · · , n; (1.8c)
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1 )x

(n�1)m+1
n+j � (m�2)

nX

i=2

aij
xn
i

xm�1
n+j

◆
, j = 1, 2; (1.8d)
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(ii )

(iii )
⇣⇣⇣)

(iv )

|x0| |x1| |x2| · · · |xn| |xn+1| |xn+2|

i 0 0 0 · · · 0 ⇤ ⇤
I 0 ⇤ ⇤ · · · ⇤ ⇤ ⇤
ii 0 0 ⇤ · · · ⇤ 0 0
II 0 see (2.9) ⇤ · · · ⇤ ⇤ ⇤
iii 0

p
r1 0 · · · 0 0 0

III
q

mr1+r2
(n�1)m+2

q
(m�2)r1+nr2
(n�1)m+2 0 · · · 0 0 0

iv
p
�r1/n 0 0 · · · 0 0 0

IV
p
�r1/n 0 0 · · · 0 ⇤ ⇤

Figure 1. The phase diagram of the GLSM with the Calabi-Yau n-fold ⇢ F (n)
m “geometric” phase;

the “⇤” entries are generally nonzero and are outside the Stanley-Reisner ideal.

Thus, there are four di↵erent phases, as depicted in Figure 1. We now analyze them in

turn, using that a ground state solution must also satisfy the F -term constraints (2.5).

Phase I: r1, r2 > 0. The F -term constraints are solved by having x0 = 0 and f(x) = 0.

From the D-term analysis above, the excluded region in the field-space

II = {x1 = . . . = xn = 0} [ {xn+1 = xn+2 = 0} (2.7)

is exactly the Stanley-Reisner (or irrelevant [18]) ideal for the Hirzebruch n-fold F (n)
m (m-

twisted Pn�1-bundle over P1). Since the xn+j cannot both vanish (2.5e) implies that �2 = 0.

Eq. (2.5e) then simplifies and implies that �1 = 0 since the xi, i = 1, . . . , n cannot all be zero.

Thus, f(x) = 0 defines a Calabi-Yau (n�1)-fold hypersurface in F (n)
m .

Direct computation shows that the polynomial f(x) is transversal for generic choices of

aij , aj , so that its n+2 gradient components @f
@xi

,
@f

@xn+j
vanish simultaneously with f(x) itself

only within the excluded region (2.7), see Appendix A for more details.

Phase II: �mr1 < r2 < 0. The F -term constraints are still solved by having x0 = 0 and

f(x) = 0. From the D-term analysis above, the excluded region in the field-space

III = {x1 = 0} [ {x2 = . . . = xn+2 = 0} (2.8)

is the Stanley-Reisner ideal for the weighted projective space Pn
(m:···:m:1:1) in terms of the

coordinates (x2, . . . , xn+2. With x1 6= 0, (2.5e) implies that �1 = m�2, and since the remaining

xi cannot all vanish simultaneously, it follows that �1 = �2 = 0. Thus, f(x) = 0 defines (the

MPCP-desingularization of) the Calabi-Yau (n�1)-fold hypersurface Pn
(m:···:m:1:1)[(n�1)m+2].

Indeed, Eqs. (2.6a) and (2.6b) imply that (recall that r2 < 0)

|x1| =

sP
j |xn+j |2 � r2

m
=

vuutr1 �
nX

i=2

|xi|2 > 0 (2.9)
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Thus, there are four di↵erent phases, as depicted in Figure 1. We now analyze them in
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which is an integral change of basis.
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m+nk, as well as of the

Calabi-Yau hypersurfaces F (n)

m [c1] ⇡ F (n)

m+nk[c1]. Thus, for any two classical field theory models involving

these Hirzebruch n-folds or the Calabi-Yau hypersurfaces therein, the transformation Lk : F (n)

m ! F (n)

m+nk

and so also Lk : F (n)

m [c1] ! F (n)

m+nk[c1] is a classical (discrete) symmetry for every k 2 Z.

Semi-classically: Already the semi-classical (“large-|ra|”) phase diagrams (Figure 2, top row) are not consis-

tent with the various features of the Lk : F (n)

m [c1] ! F (n)

m+nk[c1] di↵eomorphism: The Lk-map does preserve

the relative positions (cyclic order) of the phase regions I–IV and of their phase boundaries (i )–(iv ), and

correctly transforms the directions
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, (2.12b)

does not transform the phase boundaries (ii ) and (iv ) into those of the F (n)

m�n[c1] model. Figure 5 shows

a sample illustration of this. Thus for example, the (r1, r2) = (�1,�1)-directed ray is in phase III of

W (F (2)

3
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Figure 5: A sample illustration (n=2 and m=3) that the linear transformation (2.12) does not map the Kähler
phase diagram of the F (n)

m [c1] GLSM to that of the F (n)

m±n[c1] GLSM

W (F (2)

1
[c1]) — a LGO where the entire ground state variety has collapsed to a point. The same radial ray

is in phase IV of L1[W (F (2)

3
[c1])] — a “hybrid” model where only the fiber of the ground state variety is

collapsed to a LGO point, but is still fibered over the (full-blown) base-P1.

Whereas the geometric descriptions of the ground states in F (2)

m [c1] and Lk ·F
(2)

m+kn[c1] di↵er dras-

tically, it is at least not immediately obvious that this in fact leads to physically observable distinctions

between the F (n)

m [c1] GLSM and the (2.11)-image of the F (n)

m+kn[c1] GLSM.

Fully corrected: The (“small-|ra|”) discriminants (2.4) most definitely do not exhibit the F (n)

m [c1] ⇡ F (n)

m+n[c1]

periodicity: see Figure 3 for illustrations. The details of the discriminants (2.4) specify their highly non-

linear m- and n-dependence which therefore cannot be consistent with the linear transformation (2.11).

This is manifest from the illustrative columns of plots in Figure 3. In particular:
Is this

listing

too

fussy?
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3Now add “instantons”: 0-energy string configurations 
wrapped around “tunnels” & “holes” in the CY spacetime

Near (r1,r2) ~ (0,0), classical analysis 
of the Kähler (metric) phase-space 
fails [M&P: arXiv:hep-th/9412236]
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the instanton resummation gives:
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Figure 1: The GLSM phase diagram (shown for n=2 andm=3) with the Calabi-Yau n-fold⇢ F (n)
m “geometric”

phase; the “⇤” entries do not all vanish and are outside the Stanley-Reisner ideal of each listed phase [2].

The second equality holds owing to the gauge anomaly cancellations,
P

iQ
a
i = 0, for a = 1, 2. For the

sequence of models (1.2) with charges (1.3), this produces:
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As noted in Ref. [9], the right-hand side of (2.2) is degree-0 homogeneous in �b, again because of the

anomaly-cancellations, so that the right-hand sides in the relations (2.2) depend only on the ratio:
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This is a parametric representation of the discriminant, and so also of the “fully corrected phase diagram”

in the sense of Ref. [9]. Owing to the degree-0 homogeneity of the expressions (2.3),

1. the parametrization ⇢ :=�2/�1 loses the explicit factor � n�1
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The subsystem (1.5a)–(1.5c) defines the base-locus of the superpotential function (1.3), while

the constraint (1.5d) is known as the “moment map.” The last constraint (1.5e) restricts the

hxi to be “Qa
i -orthogonal” to the h�i, serves as an hxi-dependent mass term for the �a’s and

a h�i-dependent mass term for the X’s, as well as an X-� interaction term.

1.1 A Laurent GLSM
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X 2�m
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Mirror Motets
Now compare with the complex structure of the BBHK-mirror

Restricted to the “cornerstone” def. poly

In particular,

Jacobian/chiral ring, specifying the complex structure moduli space of the mirror-GLSM, OF (n)

m [c1]. This

will then be compared with the Kähler structure moduli space of the original GLSM (1.2), F (n)

m [c1], which

was discussed in Section 2.

To be precise, we rely on the standard non-renormalization theorems and expect the superpoten-

tial (3.2) to not acquire any additional terms, and so restrict the deformations of the superpotential —and

therefore the complex structure of the target space— to only vary the parameters
�
b0, · · · , bn+2

 
. These

form-preserving deformations (modulo the Jacobian ideal of (3.2b) as usual) then define a subring of the

full Jacobian/chiral ring, but this will su�ce for our present purposes; see Appendix A.3.2. For notational

ease, we start with the simplest n=2 case and denote:

�0 := y1 · · · y4, �1 := y 2

1 y 2

2 , �2 := y 2

3 y 2

4 , �3 :=
ym+2

1

ym�2

3

, �4 :=
ym+2

2

ym�2

4

, (3.8)

so that

g(y) =
n+2X

i=0

bi �i(y) = b0 �0 + b1 �1 + b2 �2 + b3 �3 + b4 �4, (3.9)

is the 5-parameter family of defining functions (3.6) considered. In Appendix A.3.2, we prove that the

correct set of relations for defining the e↵ective variations of the superpotential (3.2) is provided by the

a�ne Jacobian ideal [43, 44]

AJ(g) = Span
⇣
y1
�
@1g(y)

�
, · · · , y2n

�
@2ng(y)

�⌘
, (3.10a)

the n = 2 case of which is given by:

(3.8)

= Span
�
b0 �0 + 2b1 �1 + (2+m)b3 �3, b0 �0 + 2b1 �1 + (2+m)b4 �4,

b0 �0 + 2b2 �2 + (2�m)b3 �3, b0 �0 + 2b2 �2 + (2�m)b4 �4

�
. (3.10b)

We conjecture that the a�ne Jacobian ideal plays the same role for all cornerstone defining polynomials

modeled on the vertices of any trans-polar pair of VEX polytopes, in the manner of (3.5)–(3.6).

Parametric form: In addition to the linear relations (3.10b), the association (3.7) insures that the five

(rational) monomials (3.8) also satisfy two algebraic identities:
Are za the

flat or the

algebraic

coordi-

nates? 1 =
n+2Y

i=0

�
�i(y)

�Qa
i : 1 = ��2

0
�1 �2 and 1 = �m�2

0
��m
1

�3 �4, (3.11)

in evident correlation with the Mori charge-vectors Q1 and Q2 (1.3). The corresponding algebraic combi-

nations of the bi’s then define the “flat coordinates” in the complex structure moduli space:

za :=
n+2Y

i=0

(bi)
Qa

i :

(
z1 := b�2

0
b1 b2

(3.11)

= (b0 �0)�2 (b1 �1) (b2 �2),

z2 := bm�2

0
b�m
1

b3 b4
(3.11)

= (b0 �0)m�2 (b1 �1)�m (b3 �3) (b4 �4),
(3.12)

which must be taken modulo the a�ne Jacobian ideal (3.10b). To explore this locus, we use the vanishing

relations (3.10b) in AJ(g) to express some of the �i’s in terms of others. For example, this allows expressing

�2 ! �
mb0 �0 + (m�2) b1 �1

(m+2) b2
, �3 ! �

b0 �0 + 2b1 �1

(m+2) b3
, �4 ! �

b0 �0 + 2b1 �1

(m+2) b4
. (3.13)

The fact that the four vanishing relations (3.10a) are solved by three substitutions shows that the four

generators of the Jacobian ideal AJ(g) are in fact redundant by one.
one = the

max. # of

droppable

(extension)

vertices.
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m [c1]. This

will then be compared with the Kähler structure moduli space of the original GLSM (1.2), F (n)
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was discussed in Section 2.
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z1 = �� [(m�2)� +m]

m+2
, z2 =

(2�+1)2

(m+ 2)2 �m
, � :=


b1 �1

b0 �0

.
AJ(g)

�
,
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Mirror Motets
Now compare with the complex structure of the BBHK-mirror

Restricted to the “cornerstone” def. poly

In particular,

Jacobian/chiral ring, specifying the complex structure moduli space of the mirror-GLSM, OF (n)

m [c1]. This

will then be compared with the Kähler structure moduli space of the original GLSM (1.2), F (n)

m [c1], which

was discussed in Section 2.

To be precise, we rely on the standard non-renormalization theorems and expect the superpoten-

tial (3.2) to not acquire any additional terms, and so restrict the deformations of the superpotential —and
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. These
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so that
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bi �i(y) = b0 �0 + b1 �1 + b2 �2 + b3 �3 + b4 �4, (3.9)

is the 5-parameter family of defining functions (3.6) considered. In Appendix A.3.2, we prove that the
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�
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We conjecture that the a�ne Jacobian ideal plays the same role for all cornerstone defining polynomials

modeled on the vertices of any trans-polar pair of VEX polytopes, in the manner of (3.5)–(3.6).

Parametric form: In addition to the linear relations (3.10b), the association (3.7) insures that the five

(rational) monomials (3.8) also satisfy two algebraic identities:
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nates? 1 =
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in evident correlation with the Mori charge-vectors Q1 and Q2 (1.3). The corresponding algebraic combi-

nations of the bi’s then define the “flat coordinates” in the complex structure moduli space:

za :=
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i :
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= (b0 �0)�2 (b1 �1) (b2 �2),

z2 := bm�2

0
b�m
1
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= (b0 �0)m�2 (b1 �1)�m (b3 �3) (b4 �4),
(3.12)

which must be taken modulo the a�ne Jacobian ideal (3.10b). To explore this locus, we use the vanishing

relations (3.10b) in AJ(g) to express some of the �i’s in terms of others. For example, this allows expressing
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, �4 ! �

b0 �0 + 2b1 �1

(m+2) b4
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The fact that the four vanishing relations (3.10a) are solved by three substitutions shows that the four

generators of the Jacobian ideal AJ(g) are in fact redundant by one.
one = the

max. # of

droppable

(extension)

vertices.
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So,

and

are identical?!

Better yet: 

Owing to the overall degree-0 homogeneity (and among the bi’s separately from that among the �i’s),

the substitutions (3.13) reduce the relations (3.12) to:
b1/b0 cor-

responds

to ⌫1�⌫0,
the

MPCP-

desingula-

rizing

vector.

Hmm?

z1 = �
� [(m�2)� +m]

m+2
,

z2 =
(2�+1)2

(m+ 2)2 �m
,

� :=


b1 �1

b0 �0

.
AJ(g)

�
, (3.14)

which is a parametric expression of the discriminant in the complex structure moduli space for the mirror

GLSM, OF (2)

m [c1]. Proceeding in the analogous fashion for higher n, we obtain the general solution:

M (OF (n)

m [c1]) :

8
>>><

>>>:

z1 = (�1)n�1
� [(m�2)� +m]n�1

[(n�1)m+2]n�1
,

z2 =
(1 + n�)2

[(n�1)m+2]2 �m
,

� :=


b1 �1

b0 �0

.
AJ(g)

�
. (3.15)

The discriminants parametrized by (3.15) all exhibit asymptotes specified by the limits (ordered for m> 2):

� :=
b1 �1

b0 �0

! �1, �
m

m�2
,

⇣
�? := �

m

n(m�2)

⌘
, �

1

n
, 0, +1, (3.16)

which specify four “external” asymptotic directions and �? again specifies an “internal” V-shaped spike.

Although the functional expression of (3.15) does not at all resemble that of (2.4), the parametric

plots of � 1

2⇡<[za] for the n=2, 3, 4 and m=0, · · · , 4 cases are identical to those shown in Figure 3, and we

have verified that this identity persists also for higher m. Not only are the resulting star-shaped concavely

curving real projections of the discriminants identical to the Kähler class results in Section 2, but the

various values of =[log(za)] also match the values of ✓̂a precisely.

Closed form: As noted also for the Kähler structure discriminant in Section 2.1, it does not seem possible

to eliminate the parameter � from the parametric solution (3.15) for all (n,m) in closed form. However, it

is possible to do so for fixed (n,m): Clearing the denominators, Eqs. (3.15) shows that:

• the equation determining z1 is O(�n) for m 6= 2, but O(�1) for m = 2;

• the equation determining z2 is O(�max[2,m]) for m > 0.

We therefore write the discriminant polynomial in the form

�(z1, z2) =

max[2,m]X

i=0

n0X

j=0

�i,j (z1)
i (z2)

j , n0 =
n n for m 6= 2,

1 for m = 2,
(3.17a)

and require�(z1, z2) to vanish upon substituting (3.15). For example and future convenience, this produces

for n = 4:

m �(z1, z2)

0 (1�28 z1)2 � 24(1+28·3 z1)z2 + 25(3�28 z1)z22 � 28 z23 + 28 z24

1 (1�28 z1)2 � (3�28·19 z1)z2 + (3�26·52·7 z1)z22 � (1+24·54 z1)z23 � 55 z1 z24

2 (1�28 z1)2 � 218 z2
1
z2

3 (1�28 z1)2 + (34�24·7·373 z1+212·113 z12)z2 + 3(36�2·32·52·7·11 z1+26·5·115 z12)z22

+ 34(35�32·114 z1+117 z12)z23 + 1111 z13 z24

4 (1�28 z1)2 � 24(22·3�5·1231 z1+28·32·73 z12)z2 + 25(27·3�27·72·31 z1+77·29 z12+28·77 z13)z22

� 28(210�28·74 z1+23·77·17 z12�710·19 z13)z23 + 28·714 z14 z24

(3.17b)

and so on.
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b1

#
=

"
�n m�2

1 �m

# "
�1

�2

#

2 2

M (OF (n)
m ) � P1 ⇡���������! P1 ⇢ W (F (n)

m )
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3.3 Mirror Mapping

It is not hard to show by direct substitution that
"
b0

b1

#
=

"
�n m�2

1 �m

#"
�1

�2

#
i.e. � =

b1
b0
7!

1�m ⇢

(m�2) ⇢�n
=

�1 �m�2
(m�2)�2�n�1

, (3.18)

perfectly maps the complex structure discriminant (3.15) of the transposed GLSM (3.2) to the Kähler

structure discriminant (2.4) of the original GLSM (1.2). We note that the determinant of the Möbius

transformation (3.18) is (n�1)m+2, which equals the degree of the quantum symmetry group in the LGO
Why is

this true? phase of the original GLSM, F (n)

m [c1]; see Ref. [2].

There is however a much more direct verification of the isomorphism between (2.4) and (3.15).

The particular functional expression (3.15) depends on the particular choice of monomials �i that

were eliminated by (3.13). That is to say, the remaining monomials, �0,�1, represent two di↵erent AJ(g)-

equivalence classes. One can also solve the vanishing of AJ(g) by expressing instead

�0 ! �
2b2 �2 � (m�2)b3 �3

b0
, �1 !

b2 �2 �mb3 �3

b1
, �4 !

b3 �3

b4
, (3.19)

whereupon we obtain
b3/b2 cor-

responds

to ⌫3�⌫2,
the span

between

the fibre-

and the

base-P1
sub-fan.

Hmm?

z1 =
1�m �

[(m�2)� � 2]2
,

z2 =
�2 [(m�2)� � 2]m�2

(1�m �)m
,

� :=


b3 �3

b2 �2

.
AJ(g)

�
, (3.20)

instead of (3.14). This choice of the equivalence class representatives provides a perfect match (upon

identifying the a�ne parameters � $ ⇢) for the n=2 case of (2.4).

The analogous calculations for the n=3 and n=4 cases yield perfectly analogous results, and the com-

plex structure discriminants are again found to be identical to the respective Kähler structure discriminants

found in Section 2.

Mirror isomorphism generation: The parametric representation of the complex structure discriminant (3.15)

has been obtained by evaluating the definitions (3.12)

za :=

 n+2Y

i=0

�
bi �i(y)

�Qa
i

.
AJ

�
g(y)

��
, (3.21)

in terms of AJ
�
g(y)

�
-equivalence classes. Comparing the formulae (3.21) and (2.2), the mirror map thus

reduces to the isomorphism

n+2Y

i=0

✓ 2X

b=1

Qb
i �b

◆Qa
i ⇡
 ��!

mm

 n+2Y

i=0

⇣
bi �i(y)

⌘Qa
i
.

AJ
�
g(y)

��
, a = 1, 2, (3.22)

between the multinomial in the lowest component fields �a of the twisted-chiral superfields associated with

the gauge symmetries of the original GLSM and the AJ(g)-equivalence class of like-formed multinomials

in the parametrized (rational) monomials of the lowest component fields yI of the chiral superfields from

the (�0-augmented) defining function of the mirror GLSM. As noticed in Ref. [10], the so-called “Horn

uniformization” [30] and [8, Section 9.3.C] guarantees that the right-hand side expressions (3.22) may be

written in the left-hand side form, with (�1,�2) being identified with homogeneous coordinates of a P1.

This precisely matches the identifications made in (2.9) and (2.3)–(2.4) above.
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W (F (n)
m ) :

8
>><

>>:

e�2⇡r1+i✓̂1 =
1�m ⇢

[(m�2)⇢� n]n
,

e�2⇡r2+i✓̂2 =
⇢2 [(m�2)⇢� n]m�2

(1�m ⇢)m
;

⇢ :=
�2
�1

.
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So:
In fact, also:

…when restricted to no (MPCP) blow-ups & “cornerstone” polynomial

Then,
Same method:

Carrying out the perfectly analogous calculations for n=3 and n=4 verifies that the mirror map

identification (3.24) induces the corresponding isomorphism between the Kähler structure discriminants

(and so also the “fully corrected” phase diagrams) of the F (n)

m [c1] GLSMs and the complex structure space

discriminants of the mirror OF (n)

m [c1] GLSMs for all n=2, 3, 4. While we have neither an inductive proof

nor have done so explicitly for n> 4, we conjecture that in fact

W (F (n)

m [c1])
mm

⇡ M (OF (n)

m [c1]), n > 2, m > 0, (1.1a0)

where W (F (n)

m [c1]) and M (OF (n)

m [c1]) are, respectively, the fully corrected Kähler structure moduli spaces

of the original F (n)

m [c1] GLSMs (1.2b), and the exact complex structure moduli space of the transposition-

mirror (3.2b), OF (n)

m [c1].

4 The Other Half of the Mirror Mapping

The preceding discussion covers the mirror relation (1.1a), W (F (n)

m [c1])
mm

⇡ M (OF (n)

m [c1]). We now turn to

the “other half”12 of the mirror relations (1.1b), and show that W (OF (n)

m [c1])
mm

⇡ M (F (n)

m [c1]).

To this end, we use the maximal U(1)n gauge symmetry of the superpotential (3.2b) generated by

the mirror-charges eQ↵ (3.4). This rank-n gauge symmetry group of the mirror GLSMs (3.2b) implies an

n-dimensional Kähler phase diagram. Whereas the isomorphism between the discriminants (2.3)–(2.4)

and (3.15), and so also the respective 2-dimensional moduli spaces was easy to see graphically, we now

seek to establish W (OF (n)

m [c1])
mm

⇡ M (F (n)

m [c1]) analytically, akin to (3.2b).

We hasten to note that the dimension of the full Kähler moduli space of W (OF (n)

m [c1]) and the full

complex structure moduli space of M (F (n)

m [c1]) is bigger than n: it is 18 for n=3 and 86 for n=4.

However, the transposition construction (and in particular, the prescription of swapping the “geometric”

and “quantum” symmetries [11]) restricts to the particular forms (1.2) and (3.2), which Appendix A.3.2

shows are preserved by the a�ne Jacobian ideal. This permits us to focus on the so-parametrized subspace

of M (F (n)

m [c1]). Correspondingly, although the mirror of F (n)

m [c1] involves a desingularization of a specific

finite quotient of OF (n)

m [c1], we ignore these desingularizations and focus on the subspace of W (OF (n)

m [c1])

inherited from OF (n)

m [c1] itself and probed by the Fayet-Iliopoulos parameters.

Remarkably, the so-restricted moduli spaces are also perfectly mirror-isomorphic. While we conjecture

that this isomorphism extends throughout the full respective moduli spaces, we do not address herein this

technically much more demanding question.

4.1 The n = 2 Case

The Kähler structure: Just as the (semi-classical) phase-boundary directions may be read o↵ the vertical

2-component vectors comprising the Mori charge-vectors (1.3), so can we then also read (right-to-left) the

phase-boundary directions from (3.4):
h

0

m+2

i
,

h
m+2

0

i
,

h
2

m

i
,

h
m
2

i
,

h
�2(m+2)

�2(m+2)

i
. (4.1)

All but the last of these directions (left-most in (3.4)) lie within the 1st quadrant or in its boundary, whereas

the last one balances them, extending into the third quadrant. Also, the collection of vectors (4.1) clearly

exhibits the eQ1
$ eQ2 symmetry of the choice of the eQ↵ in (3.4), resulting in the reflection symmetry about

the 45�-direction in the plane spanned by the first two coordinates seen in Figure 6, below.

12
In fact, there is also the sector of moduli of the Calabi-Yau n-fold X locally represented by H

1
(X,EndT ) as well as the

“mixed couplings” between the three sectors [33], but this is outside our present scope.
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dimW (OF (n)
m [c1]) = n = dimM (F (n)

m [c1])
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e2⇡i e⌧↵ =
2nY

I=0

✓ 2X

�=1

eQ�
I e��

◆ eQ↵
I

z̃a :=

 2nY

I=0

�
aI 'I(x)

� eQ↵
I

.
AJ

�
f(x)

��
,
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1

To explore this locus, we solve the vanishing of AJ(f) by expressing some of the 'i’s in terms of

others. Among other choices, this allows expressing

'0 ! �
2(a3 '3 + a4 '4)

a0
, '1 !

ma3 '3 + 2a4 '4

(m+2) a1
, '2 !

2a3 '3 +ma4 '4

a2(m+ 2)
. (4.12)

Denoting again by AJ(I···K)(f) the reduction modulo the Jacobian ideal of f(x) by means of eliminating

'I(x), · · · ,'K(x), we compare the so-obtained representatives with those in (4.2a):

I

�P
�
eQ�

I e��
�

(aI 'I)/AJ(210)(f)

0 �2(m+2)(e�1 + e�2) �2
�
(a3 '3) + (a4 '4)

�

1 m e�1 + 2 e�2 m (a3 '3)+2 (a4 '4)

m+2

2 2 e�1 +m e�2 2 (a3 '3)+m (a4 '4)

m+2

3 (m+2) e�1 (a3 '3)

4 (m+2) e�2 (a4 '4)

(4.13a)

This consequence of the choice (4.12) is thus shown to exhibit a perfect match of the respective generators

e�1 7! (a3 '3)/(m+2) and e�2 7! (a4 '4)/(m+2), (4.13b)

up to an overall rescaling by (m+2) of the homogeneous variables ('1,'2), which cancels owing to the

degree-0 homogeneity of (4.11) guaranteed by
P

I
eQ↵

I = 0. This manifest mirror map identification of the

generators �X

b

eQ�
I e��

� ⇡
 ��!

mm
(aI 'I)/

AJ(f), I = 0, · · · , 2n, (4.13c)

then precisely identifies the discriminant (4.3) with

z̃1(�) =
(m+ 2 �)m (2 +m �)2

4m+2 (m+2)m+2 (1 + �)2(m+2)
,

z̃2(�) =
�m+2 (m+ 2 �)2 (m � + 2)m

4m+2 (m+2)m+2 (1 + �)2(m+2)
,

� =


(a4 '4)

(a3 '3)

.
J(210)(f)

�
. (4.14)

This verifies the n=2 case of the “other half” (1.1b) of the mirror map.

4.2 The n = 3 Case

We follow the analysis in Sections 2 and 3, which established the isomorphism between (2.2) and (3.21)

for n=2, 3, 4:

e2⇡i ⌧̂a =
n+2Y

i=0

✓ 2X

b=1

Qb
i �b

◆Qa
i

⇡ za :=

 n+2Y

i=0

�
bi �i(y)

�Qa
i

.
AJ

�
g(y)

��
, (4.15)

as well as the n=2 case of the isomorphism

e2⇡i e⌧↵ =
2nY

I=0

✓ 2X

�=1

eQ�
I e��

◆ eQ↵
I

⇡ z̃↵:=

 2nY

I=0

�
aI 'I(x)

�Q↵
I

.
AJ

�
f(x)

��
, (4.16)

established in the first part of this section. The established isomorphism between the algebraic gener-

ators (3.24b), its n=3, 4 analogues, and (4.13c) will then clearly imply the isomorphisms between the

respective discriminants.

23

e2⇡i e⌧↵ =
2nY

I=0

✓ 2X

�=1

eQ�
I e��

◆ eQ↵
I

z̃a =
2nY

I=0

�
aI 'I(x)

� eQ↵
I

.
AJ
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CY(n–1)-folds in Hirzebruch 4-folds
Euler characteristic
Chern class, term-by-term
Hodge numbers
Cornerstone polynomials & mirror
Phase-space regions & mirror
Phase-space discriminant & mirror
The “other way around”
Yukawa couplings
World-sheet instantons
Gromov-Witten invariants

Will there be anything else?

37

BH

—Proof-of-Concept—

✅

✅

✅

✅

d(θ (k)) := k! Vol(θ (k))  [BH: signed by orientation!]

Oriented polytopes
Trans-polar▿ constr.
Newton ΔX := (Δ⭑

X)▿

VEX polytopes 
s.t.: ((Δ)▿)▿ = Δ
Star-triangulable 
w/flip-folded faces
Polytope extension 
⇔ Laurent monomials

BB
HK  

mirr
or

s

Summary arXiv:1611.10300 + more

✅

✅

Textbooks to be 
(re)written, 

amended./

✅

✅

-✅
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