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ABSTRACT

Many superstring models with N=1 supergravity in 4-dimensional

Minkowski spacetime involve σ-models with complex three dimen-

sional, Ricci-flat target manifolds. In general, inclusion of singular

target spaces probes the boundary of the moduli space and com-

pletes it. Studing suitably singular σ-models, I find certain criteria

for the severity of admissible singularizations.
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1 Calabi-Yau Manifolds and Beyond

Since Ref. [1], Calabi-Yau manifolds received perpetually returning interest of the physics

community. These (Ricci-flat and Kähler) manifolds have been shown, to a constantly

improving accuracy [2,3], to describe superstring vacuua.

1.1 The Pointillist Picture

The sector of the world sheet action which pertains to the Calabi-Yau compactification

features rigid (2,2)-supersymmetry in the standard ansatz and takes the form

S
(2,2)
CY =

∫
Σ

d2σ d2ς d2ς K(CY )(Z,Z) , (1.1)

where

Zµ def
= Zµ + ς+ζ+

µ + ς−ζ−
µ + ς+ς−Zµ (1.2)

is the string supercoordinate. Upon the d2ς d2ς -integration and the elimination of the

auxiliary component fields Zµ, S
(2,2)
CY describes the dynamics of the component fields Zµ,

ζµ± and their conjugates. For (1.1) to describe (super)string vacua, K(CY ) is chosen so

that S
(2,2)
CY is superconformally invariant.

The partition function is

Z(2,2)
CY

def
=
∫
D[Z]D[Z] exp{ i S(2,2)

CY } (1.3)

where the integration measure D[Z]D[Z] can be organized hierarchically, starting with

the classical component fields in Zµ,∫
M

d6z
√

det(g)
∫
Tz(M)

d6ζ±

∫
Tz(M)

d6ζ± , (1.4)

where det(g) is the determinant of gµν = K
(CY )
,µν . We expect Z(2,2)

CY to be dominated by

quantum fields (not necessarily smooth or continuous) that are ‘near’ the classical ones

so that the latter represent fairly well the average of the dominant contributions.

On the other hand, the component fields of Z include the coordinates and the

(co)tangent vectors on the internal space M. All information that these can yield we

can also obtain by various techniques of standard algebraic geometry, which is what one

conventionally does in the so-called ‘point-limit’ of (super)strings. The observed stout-

ness of the ‘point-limit’ results (with world sheet instanton effects included) [2,3] can

thus be taken as circumstantial evidence for our expectations regarding the dominant

contributions to the path-integral in (1.3).
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1.2 The Instanton Retouch

In the σ-model with the action (1.1), Zµ maps the world sheet Σ into the target spaceM,

while the ζ±
µ map Σ into the (holomorphic) tangent space ofM at Zµ. The holomorphic

instantons [2] are classical configurations of Zµ, inequivalent to the ‘tree-level’ Zµ which

is constant on Σ. In other words, they arise as homotopically non-trivial maps Σ→M.

Now, the world sheet being a Riemann surface, only holomorphic maps (in)to even-

dimensional subspaces of the target manifold M can agree with its complex structure,

which in turn is crucial for (2, 2)-supersymmetry. Since the harmonic (1,1)-forms are

dual to 2-cycles (which may be thought of as formal sums of certain 2-dimensional sub-

spaces) inM, holomorphic instantons are easily seen to interfere with any result related

to (1,1)-forms. Odd-dimensional subspaces, on the other hand, can only be interfered

with through their boundaries or the spaces that they themselves bound. Thus, results

that depend only on odd-dimensional cycles in M cannot be affected by holomorphic

instantons. Such results are then exact, moreover, to any finite order in string loops [2].

In particular, triple-(2,1) Yukawa couplings cannot be renormalized (cf. Ref. [3]).

Moreover, the world sheet is naturally mapped to 2-cycles, which are dual to (1,1)-

cohomology. To any basis for the latter, there corresponds a basis for the former, hence

a parametrization for the instantons. Many features of their effects can therefore be

obtained with no actual evaluation [4], aside from the fact that the evaluation also can

be performed, at least in principle.

1.3 Who Ordered Singularities ?

Perhaps the sincerest argument for considering singular target spaces for (super)string

propagation is that there is no compelling reason against them. Now, parameter spaces of

most known (smooth) Calabi-Yau manifolds connect when certain conical singularizations

are included [5,6]. Also, spaces with cyclic quotient singularities can be smoothed into

Calabi-Yau manifolds [7]. However, the general theory of singularities and their smooth-

ings [8,9] is fairly complicated and it is unclear at present which are the singularities that

can be resolved to give a Calabi-Yau manifold and precisely which are innocuous for the

(super)string.

In the present paper, certain criteria are found for admissible singularities. These are

satisfied, for example, by all simple (A,D,E), modality-1 and -2 singularities as listed

in the first book of Ref. [8](p.158–160). This includes the conifolds of Ref. [5,6] as the

simplest case [10].

An important obstacle in finding a complete answer to the question raised in the title

of this paper is the awesome number and complexity of ways that a complex 3-fold can
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singularize. In fact, only the simplest singularities are classified and their smoothings

well understood [8,9]. We must therefore refrain from complete generality and content

ourselves presently to study singularities which typically arise.

In all constructions that I am aware of, singularities arise as follows. (1) When

embedding via simultaneous constraints, these may fail to be transverse. (2) When

passing to the quotient by the action of a finite group, its fixed points yield singularities.

(3) Subspaces in a given smooth Calabi-Yau manifold may be crushed into smaller and

singular subspaces; e.g., the reverse of blowing up a cyclic quotient singularity of an

orbifold. It is fairly obvious that type (3) brings nothing new; for it is the reverse of

smoothing the singularities of type (1) or (2). Cyclic quotient singularities are innocuous

for (super)strings [11] (see also Ref. [12,13,14]). I therefore focus on type (1) and note

that these are described completely by a non-transverse system of algebraic equations

in local coordinates. Thus, Lagrangian analysis of constrained (2,2)-supersymmetric

σ-models [15,16] is well suited for the task and is presented in section 2. The existence

of the nowhere vanishing holomorphic volume-form is studied in section 3. Some brief

remarks and discussion are left for section 4.

2 Constrained Supersymmetric σ-Models

The main disadvantage of the world sheet action (1.1) is that it requires an explicit

Kähler potential K(CY ) with which S
(2,2)
CY exhibits superconformal invariance; none are

known for any Calabi-Yau manifold. Also, the functional dependence of K(CY ) on Z and

Z is often irrelevant; many physically observable quantities depend only on some rather

coarse (‘topological’) properties of K(CY ). On the other hand, many of the Calabi-Yau

manifolds are constructed as embedded in a bigger and better understood space and

the induced Kähler potential suffices for many of the physically motivated computations

[4,16]. We therefore consider a Calabi-Yau manifold defined as the solution of a system

of K homogeneous, holomorphic polynomial constraints

P a(x) = 0 , ∀x ∈M ↪→ X̃ , a = 1, . . . , K (2.1)

in some complex, compact (K + 3)-dimensional ambient space X̃ (such as IP4).

The world sheet action of a corresponding σ-model is then [15,16]

S =
∫

Σ
d2σ

(
Lkin. + Lcon.

)
, (2.2)

where

Lkin. =
∫

d2ς d2ς K(X,X) , Lcon. =
∫

d2ς Λa P
a(X) + h.c. (2.3)
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and K(X,X) is a suitably chosen Kähler potential on X̃. Here

Xµ def
= Xµ + ς+ ξ+

µ + ς− ξ−
µ + ς+ς− Xµ (2.4)

are K + 3 local coordinate superfields for X̃ and

Λa
def
= Λa + ς+ λ+a + ς− λ−a + ς+ς− La (2.5)

are Lagrange superfields.

Path-integration over Λa, λ±a, La and Xµ yield delta-functionals which enforce alge-

braic field equations. Upon the fermionic integration, these are :∫
D[Λa] ⇒ 0 = P a

,µν ξ+
µ ξ−

ν − P a
,µ Xµ , (2.6)

∫
D[λ±a] ⇒ 0 = P a

,µ ξ±
µ , (2.7)

∫
D[La] ⇒ 0 = P a , (2.8)

∫
D[Xµ] ⇒ 0 = Gµν Xν − Γµν ρ ξ+

ν ξ−
ρ − Λa P

a
,µ , (2.9)

with Gµν = K,µν and Γµν ρ = K,µν ρ. Contracting Eq. (2.9) with Gµρ P a
,ρ, we obtain

ΛaM
aa = P a

,µ Xµ − Γµρσ P
a
,µ ξ+

ρ ξ−
σ , (2.10)

Maa def
= ( P a

,µ G
µµ P a

,µ ) , (2.11)

here and hereafter, Gµµ is used to raise indices.

2.1 Smooth target space

Maa is easily seen to be invertible and actually positive definite on the constrained sub-

space, provided the matrix of gradients [P a
,µ(X)] is of rank K where P a(X) = 0, i.e.,

provided the {P a(X) = 0} subspace is smooth. Then,

Λa = Maa P
a
,µ Xµ − Maa P

a
,µ Γµρσ ξ+

ρ ξ−
σ . (2.12)

Path-integration over Xµ results in a delta-function that enforces Eq. (2.12).

Note that the matrix of gradients [P a
,µ] is a proper tensor and independent of any

connection Γµ on the constrained subspace where P a = 0 and so P a
;µ

def
= P a

,µ + Γµ · P a =

P a
,µ. Furthermore, since the polynomials P a(X) are locally transverse to the subspace

M ↪→ X̃, the matrix [P a
,µ(X)] projects onto the normal space to M at Zµ.
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Upon elimination of the X’s and X’s by means of their new equations of motion, the

Lagrangian in (2.3) contains the four-fermion term[
Rµνρ σ + P a

,µ;ρM
aa P a

,ν;σ

]
ζ+

µ ζ−
ρ ζ+

ν ζ−
σ , (2.13)

where

Rµνρ σ
def
= K,µρν σ − Γµρ

κ Γκν σ , P a
,µ;ν

def
= P a

,µν + Γµν
ρ P a

,ρ (2.14)

are the standard Riemann tensor on X̃ and the extrinsic curvature of the constrained

subspace, respecively. The sum of the two contributions in Eq. (2.13) is indeed the

induced Riemann tensor on the constrained subspace, to which the four-fermion term

should couple.

2.2 Singular target space

We now prove the following.

For a constrained σ-model to inherit the (2,2)-supersymmetry of the ambient

σ-model and the possible singularities to be innocuous, it suffices that the

constraints have nonzero Taylor series up to and including second order.

Consider the case where rank[P a
,µ] < K at a finite number of points of the {P a = 0}

subspace M, which is therefore singular at those points. Also, for ease of notation, we

take K = 1. At a singular point, both P 1 and P 1
,µ vanish and there Eqs. (2.6) becomes∫

D[Λ1] ⇒ 0 = P 1
,µν ξ+

µ ξ−
ν , (2.15)

Eq. (2.8) is unchanged and restricts the string coordinates Xµ from X̃ to the 3-dimen-

sional constrained hypersurface M while Eq. (2.7) becomes trivial, 0 = 0. However, the

ξ±
µ are now constrained by Eq. (2.15)—as long as the matrix [P 1

,µν ] does not vanish. It

is easy to see that the ξ±
µ now span a 3-dimensional cone with the tip at the singularity,

as they should, tangential to the constrained hypersurface spanned by the Xµ subject to

P 1(X) = 0.

Note that, for each fixed a, the matrix of second derivatives [P a
,µν ], the so-called

Hessian, is independent of any connection at a singularity since both the polynomials P a

and the gradients P a
,µ vanish there and so

P a
;µν

def
= P a

,µν + Γµ,ν · P a + Γµν
ρP a

,ρ = P a
,µν .
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The rank of [P a
,µν ] has therefore an invariant meaning. In case of more constraints, the

matrices of second derivatives P a
,µν form a direct sum and the analogous conclusion follows

immediately.

Note also that, at a singularity, Eq. (2.9) becomes∫
D[Xµ] ⇒ 0 = Gµν Xν − Γµν σ ξ

ν
+ ξ

σ
− (2.16)

and decouples from Eqs. (2.7), (2.8) and (2.15). Using this to eliminate all the Xµ’s at the

singularity, the four-fermion term there becomes Rµνρ σ ζ+
µ ζ−

ρ ζ+
ν ζ−

σ, with the ambient

space Riemann tensor defined in (2.14) and the fermions subject to Eq. (2.15). At the

singularity, the σ-model decouples from the extrinsic curvature term which occurred in

Eq. (2.13) and would have been divergent since Maa is the inverse of Maa and the latter

vanishes at any singularity. Writing P a = φa + tϕa with φa singular and ϕa smooth,

divergent terms include t−1 and are seen to decouple in view of Eq. (2.15).

We remark that all simple (A,D,E), modality-1 and modality-2 singular polynomials

(see Ref. [8], p.158–160 of the first book) satisfy this criterion. To see this, take for

example the Ak polynomial germ, f(x) = xk+1. A germ represents all constraints in

a Cn-like neighbourhood which can be brought, through a holomorphic change of local

coordinates, to the form

f(x1) + x2
2 + . . . + xn

2 = 0 . (2.17)

They all exhibit the same type of singularity and can be smoothed in the same way.

The inclusion of squares of all the local coordinates not involved in the germ is called

Morsification. Since the germs for all simple, modality-1 and modality-2 singularities

involve less then four local coordinates, their Morsification always contains at least one

coordinate occurring as a square and the matrix of second derivatives has at least rank

one. It is important to note that the omission of even one local coordinate in Eq. (2.17)

represents a much worse singularity than is indicated by the germ.

3 The Holomorphic Volume-Form

We have thus shown that constrained supersymmetric CPn σ-models with isolated singu-

lar points in the target space stemming from non-transversality of their defining equations

do inherit the supersymmetry of the CPn models. For the resulting constrained σ-model

to lead to a 2-dimensional field theory valid for (super)string compactification, we must

prove the existence of the nowhere vanishing holomorphic (3,0)-form Ω (which can be

suitably generalized for singular spaces [9]).
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In the case when the constrained subspace is smooth, Ref. [17] defines Ω explicitly

and its existence is equivalent to the vanishing of the first Chern class. For K constraints

in a product of m (weighted) complex projective spaces,

Ω
def
=

∮
γP 1

. . .
∮
γPK

∏m
i=1 (x0

(i)dx
1
(i) . . . dx

ni

(i))

P 1(x) · · ·PK(x)
. (3.1)

Here ni is the dimension of the ith IPn factor and γP 1 is a contour in
∏m
i=1 IPni

i around

the hypersurface defined by P 1(x) = 0. The contour integrals are evaluated by means

of residues since division by each P a(x) yields a simple pole at M, where each P a(x)

vanishes but not all its gradients.

Now, when the matrix of gradients [P a
,µ] is not of maximum rank, division by the

P a(x)’s will create singularities worse than a product of K simple poles and to evaluate

the expression (3.1), we need to go beyond simple residues. Instead of pursuing this line

here, we shall follow the closely related analysis of Ref. [18].

We begin by noting that the holomorphic factor of the volume form of the ambient

space can be written locally

dVol(X̃) = Ω ∧ dP 1 ∧ . . . ∧ dPK . (3.2)

Appropriately chosen contour integration will then yield Eq. (3.1). Suppose, for sim-

plicity, dim X̃ = 4 and K = 1. Choose local coordinates x, y, u, v ∈ X̃ such that, in a

small neighborhood, the origin is the only singularity,M is given by φ(x, y, u, v) = 0 and

a, b, c, d are the respective (integral, positive) scaling weights of x, y, u, v.

It will unfortunately not be possible to discuss all such singularity types as there

simply are too many of them [8]. However, the analysis can be repeated for any other

φ(x, y, u, v) of particular interest. Consider for example

φ(x, y, u, v) = xf/a + yf/b + uf/c + vf/d , (3.3)

where f = w(φ), the weight of f(x, y, u, v), is divisible by all four of a, b, c, d. Since locally

dVol(X̃) = dx ∧ dy ∧ du ∧ dv, relation (3.2) implies that w(Ω) = a+b+c+d−f .

Now, if w(Ω) > 0, i.e., if

a + b + c + d > f , (3.4)

then [18] Ω in Eq. (3.1) equals the limit limt→0 Ωt, obtained from the holomorphic (3,0)-

form on the smoothed model with the defining polynomial locally

φt(x, y, u, v)
def
= φ(x, y, u, v) + t ϕ(x, y, u, v) , (3.5)
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where ϕ(x, y, u, v) is a smoothing perturbation of φ(x, y, u, v). Thus, for singularities of

the type (3.3), the condition (3.4) ensures the existence of Ω.

Again, all simple (A,D,E), modality-1 and modality-2 singularities satisfy this rela-

tion. Take for example the A2k type

x1
2k+1 + x2

2 + x3
2 + x4

2 = 0 .

Here w(x1) = 2, w(x2) = w(x3) = w(x4) = 2k+1 and so w(Ω) = 2k+3 > 0.

Note that the value of w(Ω) of course depends on the choice of coordinates, but its

positivity does not. Consider the determinantal conifold of Ref. [6], defined by

X(z)Y (z) − U(z)V (z) = 0 ,

where X,U are quartic and Y, V are linear in the homogeneous zi ∈ IP4. Choosing

X, Y, U, V for local coordinates, their weights are 4, 1, 4, 1 respectively and the defining

equation has weight 5; then w(Ω) = 5. By a complex linear transformation, the defining

equation can be written as
∑4
i=1Wi

2(z) = 0, in which case the weights of all Wi must

be the same and can be normalized to 1 so that the defining equation has weight 2; now

w(Ω) = 2.

4 Remarks and Discussion

4.1 Relation to Landau-Ginzburg models

Since the simple (A,D,E) singularities have found their way into 2-dimensional field

theory, it is worth pointing out that here we encounter them in a different way. In

Ref. [12,13,14], certain Landau-Ginzburg models have been studied. These may be con-

sidered as gauge-fixed version of (2.3), where Λa have all been set equal to 1 and some

generic D-term has been chosen for K(X,X). Since the anomalous dimension of D-

terms is typically positive, Lkin. in (2.3) will, typically, supply irrelevant operators to the

action. The terms in Lcon. do not get renormalized and determine the renormalization

flow fixed point. However, having ignored the D-terms, the field space of the σ-model is

not projectivised, and in particular, the origin is not excluded.

As a consequence, polynomials which are smooth in projective spaces become singular.

For example, the Fermat quintic
∑5
i=1 xi

5 = 0 is non-singular in IP4 but is singular in C5.

In fact, it decouples into five copies of A4 singularity in C1. Most importantly [13], the

singular point is isolated and defines the ground state of the Landau-Ginzburg theory.

Upon a suitable ZZ5 projection, renormalization flow leads to an exactly soluble model,

physically equivalent to compactification on the quintic in IP4 [19,13].
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The polynomials I discussed here are singular already on the projective spaces. Ig-

noring projectivity, they have (at least) bouquets of C1-like singularities meeting at the

origin. Näıve Landau-Ginzburg models inherit these bouquets of C1-like rays as ground

states, exhibit continuous degeneracy, have exactly flat directions in the field space and

infinte-dimensional chiral ring [20]. If, nevertheless, we take these models seriously, the

flat directions would indicate de-compactification. Per se, there is nothing wrong with

this; cosmologically, compactification may have parallelled the smoothing process. How-

ever, this property may simply be the artifact of the particular gauge-fixing by which the

Landau-Ginzburg models were obtained from constrained CPn.

4.2 A peek into the moduli space

As with all Calabi-Yau compactifications, there are two types of moduli fields, correspond-

ing to two types of marginal perturbations of (2.3). One type is often exhausted by listing

deformations of the defining polynomials P a(X). These correspond to deformations of

the complex structure on M. The other type corresponds to variations of the Kähler

class on M and may be realized as variations of the Kähler potential in (2.3)]1.

In general, when the system P a(X) is not transversal, the deformations of the polyno-

mials split into those that preserve the character of the singularity and those that don’t,

the latter most often producing a smoothing of the singularities. The former span the

space of complex structures for the singular space.

Consider for a moment cyclic quotient singularities. Points in the moduli space which

correspond to manifolds with a ZZn symmetry are themselves ZZn-orbifold points, i.e.,

cyclic quotients of the same order, n. The moduli subspace of ZZn-symmetric manifolds

is then the moduli space for the M/ZZn quotients. The volume of the singular cone in

the moduli space is 1
n

of that of a flat ball, as it takes n iterations of the symmetry action

(a e2iπ/n rotation) to obtain 1l.

Consider now a 1-parameter smoothing deformation of a non-transversal system. Let

the complex parameter t be chosen so that t = 0 corresponds to the singular Calabi-

Yau space, while t 6= 0 label smooth models. It is easy to check that the aperture of a

singularity in the space defined by a non-transversal system P a(x) = 0 is not rational.

For the simplest, A1, singularity in C2,

(x1 + iy1)2 + (x2 + iy2)2 = 0 , (4.1)

the cone is two-sheeted and with 90◦ opening. The volume, i.e., area of the cone is 1/
√

2

times that of a flat disk. In analogy with the orbifold example, it would take∞ iterations

]1After all, we know that all marginal operators can be found as variations of the Kähler
potential in the ‘intrinsic’ formulation with S

(2,2)
CY (1.1).
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of the e2iπ/
√

2 ‘rotations’ to obtain 1l and we therefore expect that the t = 0 point behaves

like a cusp in the t-disk (with the volume of the singular cone being 0 = 1
∞). Indeed, this

is verified by explicit calculation]2 in the case of the quintic

5∑
i=1

(zi)
5 − 5ψ

5∏
i=1

zi = 0 ,

which develops nodes (A1-singular points) at ψ5 = 1.

Interestingly, the well known moduli space of torus exhibits points with the same

qualitative features. The point τ = i corresponds to a ZZ2-symmetric torus and the area

of the singular cone (the boundary arcs extending on the two sides of τ = i are identified)

is 1
2
·πr2. The point τ = e2iπ/3 labels a ZZ3-symmetric torus, with the area of the singular

cone being 1
3
·πr2. Finally, at τ = i∞, the torus develops a node (4.1) and the area of the

singular cone is 0. This is perhaps easier seen after τ → − 1
τ
, whence the area in question

lies between two overlapping tangents of the cusp at τ = 0.
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L.E. Ibañez, J. Mas, H.P. Nilles and F. Quevedo: Nucl. Phys. B301 (1988)157.

[12] E.J. Martinec: Phys. Lett. 217B (1989)431, University of Chicago report April 1989, to appear
in the V.G. Knizhnik memorial volume ed. L. Brink et. al.

[13] C. Vafa and N. Warner: Phys. Lett. 218B (1989)51;
B.R. Greene, C. Vafa and N.P. Warner: Nucl. Phys. B324 (1989)371.

[14] B.R. Greene: Commun. Math. Phys. 130 (1990)335.

[15] J.I. Latorre and C.A. Lütken: Phys. Lett. 222B (1989)55.
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