Quantum Mechanics II

Crystals (2)

Conductivity and Semi-Conductivity

Tristan Hübsch

Department of Physics and Astronomy, Howard University, Washington DC <u>http://physics1.howard.edu/~thubsch/</u>

Conductivity and Semi-Conductivity

Solution Typical crystals have lattice sites

with a few electrons less strongly bound electrons each...

- Solution Typical crystals have lattice sites
 - Sequence with a few electrons less strongly bound electrons each...

- Electrons in any crystal exhibit collective behavior
 different from free electrons, determined by the underlying lattice
 States form
 - Quasi-continuous bands

- Electrons in any crystal exhibit collective behavior
 - Guifferent from free electrons, determined by the underlying lattice
- States form
 - Quasi-continuous bands
 - with finite gaps between them

- Electrons in any crystal exhibit collective behavior
 - Generation of the section of the sec
- States form
 - Quasi-continuous bands
 - with finite gaps between them
- At T=0K, all electrons are in their lowest possible state
 - \bigcirc filling states up to E_F , because of Pauli's exclusion principle
- Conduction band = just above E_F
- \bigcirc Valence band = just below E_F
- The position of E_F is in relation to the bands and gaps determines the conducting properties

Conductivity and Semi-Conductivity

 \bigcirc The electrons' collective behavior depends on where E_F is in relation to the bands of quasi-continuous states and the gaps:

Conductivity and Semi-Conductivity

...which, respectively, lowers and rises the potential for electrons

Conductivity and Semi-Conductivity

B

Fusing an *n*- & a *p*-doped region with a thin interface and extra voltage applied to the sides:

more realistically...

B

no current

- In all this, the potential levels were assumed to be constant within a given region...
- More realistically

Quantum Mechanics II

Now, go forth and

Department of

Tristan Hübsch

Astronomy, Howard University, Washington DC

Quantum Mechanics II

Now, go forth and

Tristan Hübsch

Department of Physics and Astronomy, Howard University, Washington DC <u>http://physics1.howard.edu/~thubsch/</u>