Quantum Mechanics II

WKB

Alpha-Decay Gamow's Simple Model Some Improvements

Tristan Hübsch

Department of Physics and Astronomy, Howard University, Washington DC <u>http://physics1.howard.edu/~thubsch/</u>

The Story So Far...

Solution Focus on 1-dimensional physics: $\hat{H}\psi = E\psi$

$$\widehat{H} = -\frac{\hbar^2}{2M}\frac{\mathrm{d}^2}{\mathrm{d}x^2} + W(x) \qquad k(x) := \sqrt{\frac{2M}{\hbar^2}}\left[E - W(x)\right]$$

The "standard wave-functions" are:

 $\psi_{\text{WKB}}(x) = \frac{A}{\sqrt{k(x)}} e^{+i\int dx \ k(x)} + \frac{B}{\sqrt{k(x)}} e^{-i\int dx \ k(x)} \text{ where } E > W(x)$ $\psi_{\rm wkb}(x) = \frac{C}{\sqrt{\kappa(x)}} e^{-\int dx \ \kappa(x)} + \frac{C}{\sqrt{\kappa(x)}} e^$ $= e^{+\int dx \kappa(x)}$ where E < W(x) Matching conditions **Barrier to Left Barrier to Right** The lower limit in the $C = (\vartheta^* A + \vartheta B)$ $C = \frac{1}{2}(\vartheta^* A + \vartheta B)$ integrals in the exponents $D = \frac{1}{2}(\vartheta A + \vartheta^* B) \qquad D = (\vartheta A + \vartheta^* B)$ is the reference point in $A = \vartheta C + \frac{1}{2} \vartheta^* D$ $A = \frac{1}{2}\vartheta C + \vartheta^* D$ the matching condition $B = \vartheta^* C + \frac{1}{2} \vartheta D$ $B = \frac{1}{2}\vartheta^*C + \vartheta D$ specification

WKB

Applications

$\psi_{\rm wkb}(x) = \frac{C}{\sqrt{\kappa(x)}} e^{-\int dx \ \kappa(x)} + \frac{D}{\sqrt{\kappa(x)}} e^{+\int dx \ \kappa(x)}$ $\psi_{\rm wkb}(x) = \frac{A}{\sqrt{k(x)}} e^{+i\int dx \ k(x)} + \frac{B}{\sqrt{k(x)}} e^{-i\int dx \ k(x)}$

 \bigcirc Potential well w/transition points $x_* = a$ and $x_* = b$ The energy-quantization relation is:

$$\int_{a}^{b} dx \sqrt{\frac{2M}{\hbar^{2}}} [E - W(x)] = \begin{cases} (2n + \frac{1}{2})\pi \\ (2n + \frac{3}{2})\pi \end{cases} = \begin{cases} (2n + \frac{3}{4})\pi \\ (2n + \frac{7}{4})\pi \end{cases} = \begin{cases} (2n + 1)\pi \\ (2n + 2)\pi \\ (2n + 2)\pi \end{cases}$$
"symmetric"
$$W(x)$$

$$W$$

Whenever *W*(*x*) crosses *E* discontinuously

$$\bigtriangleup \psi(x) = 0 = \bigtriangleup \psi'(x)$$

Whenever W(x) crosses E continuously

WKB connection formulae

Barrier to Left

 $C = (\vartheta^* A + \vartheta B) \qquad C = \frac{1}{2}(\vartheta^* A + \vartheta B)$ $D = \frac{1}{2}(\vartheta A + \vartheta^* B) \qquad D = (\vartheta A + \vartheta^* B)$

$$A = \frac{1}{2}\vartheta C + \vartheta^* D$$
$$B = \frac{1}{2}\vartheta^* C + \vartheta D$$

$$=\frac{1}{2}\vartheta^*C+\vartheta D$$

Barrier to Right

 $A = \vartheta C + \frac{1}{2} \vartheta^* D$ $B = \vartheta^* C + \frac{1}{2} \vartheta D$

WKB: **\alpha-Decay**

General Physics Facts

- Solution Θ one typical α -decay starts with Uranium-234 (92 p & 142 n)
 - Too complicated: 234 3-vectors (702 equations of motion)
 - \bigcirc ...with C₂²³⁴ = 27,261 pairwise potential terms
 - \bigcirc ...representing the *strong* nuclear forces keeping the nucleus stable \bigcirc ...where a (2*p*2*n*) subset form a subsystem
 - ...that escapes the strongly attractive potential of 230 other nucleons

 $^{A+4}_{Z+2}X \rightarrow ^{4}_{2}\text{He}^{++} + ^{A}_{Z}Y^{--}, \text{ or } ^{A+4}_{Z+2}X \xrightarrow{\alpha} ^{A}_{Z}Y.$

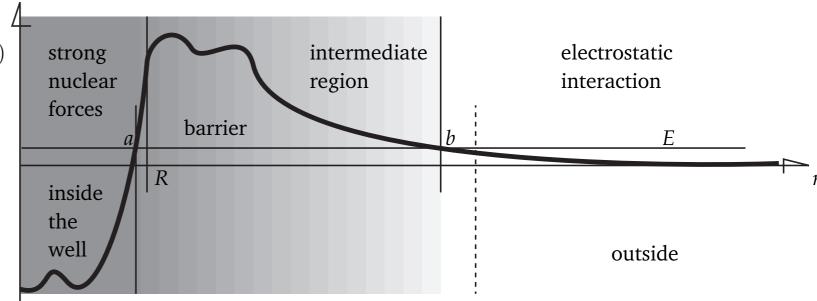
- Special cases: *A–Z* =(#*n*)= 2, 8, 20, 28, 50, 82, 126 ("magic numbers")
 - \bigcirc Lead-208 (#*p*=82 & #*n*=126) is doubly magical
 - p's and n's separately form "closed shells"
 - \bigcirc Polonium-212 → α + Lead-208; think Po-212 = [Pb-208+ α], which decays
- ♀ "Parent nucleus" = ["Daughter nucleus"+ α] → "Daughter nucleus" + α ♀ "Daughter nucleus"⇒ (classical) potential in which (quantum) α moves

General Physics Facts

The "daughter nucleus" potential:

- \mathcal{Q} is attractive $0 \le r \le (\mathbb{R} \sim 1 \text{fm})$ (strong interactions), where W(r) < 0
- \bigcirc away from the daughter nucleus, $r = R_{\infty} \gg (R \sim 1 \text{ fm})$, $W(r) = 2Ze'^2/r$ (E&M)
- \bigcirc in-between, $\mathbb{R} \leq \mathbf{r} \ll R_{\infty}$, $W(\mathbf{r})$ provides a barrier
- \bigcirc For min[$W(\mathbf{r})$] $\leq E \leq 0$, α is stably bound
- \bigcirc For 0 ≤ *E* ≤ max[*W*(*r*)], *α* is unstably bound and can decay (& "un-decay")
 - \bigcirc & there exist two points where $E_{\alpha} = W(a) = W(b)$
 - Classically allowed
 - $0 \le r \le a \& b \le r \le \infty$
 - $\begin{aligned} & \bigcirc Classically \text{ forbidden } W(\vec{r}) \\ & a \leq r \leq b \end{aligned}$

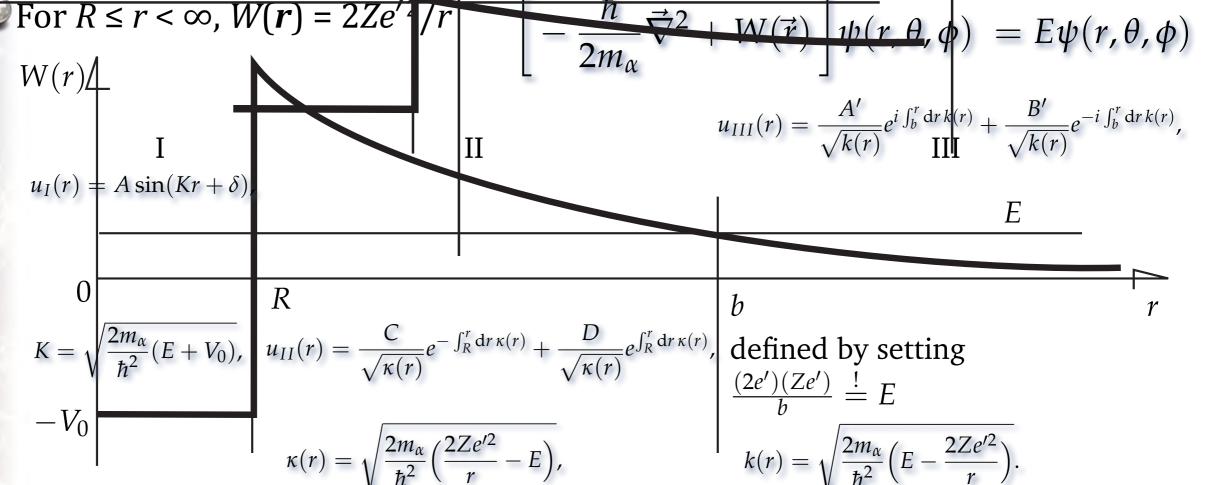
For max[$W(\mathbf{r})$] $\leq E \leq 0$ α is free to move everywhere



Gamow's Simple Model

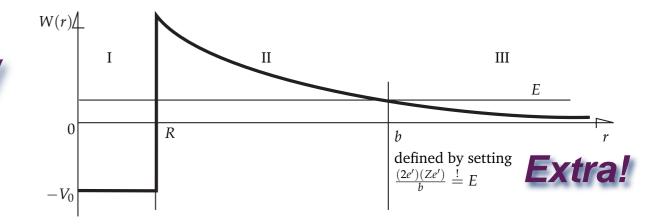
Our of the second se

Extra!



$$\psi(r,\theta,\phi) = \frac{u(r)}{r} P_{\ell}^m(\cos\theta) e^{im\phi} \quad \frac{\mathrm{d}^2 u}{\mathrm{d}r^2} + \left[\frac{2m_{\alpha}}{\hbar^2} \left[E - W(r)\right] - \frac{\ell(\ell+1)}{r^2}\right] u = 0$$

Gamow's Simple Model



@ r = b, II \leftrightarrow III (for α -decay, B' = 0):

 $C = \vartheta^* e^{\sigma} A',$ $D = \frac{1}{2} \vartheta e^{-\sigma} A', \qquad \sigma = \int_R^b dr \,\kappa_R = \sqrt{\frac{2m_\alpha}{\hbar^2}} \int_R^b dr \,\sqrt{\frac{2Ze'^2}{r} - E}.$ $\vartheta = e^{i\pi/4},$

Gamow's Simple Model

So, we have:

$$C = \frac{A}{2\sqrt{\kappa_R}} \left[\kappa_R \sin(KR) - K\cos(KR) \right], = \vartheta^* e^{\sigma} A',$$

$$I \leftrightarrow II A \qquad II \leftrightarrow III \\ D = \frac{A}{2\sqrt{\kappa_R}} \left[\kappa_R \sin(KR) + K\cos(KR) \right], = \frac{1}{2} \vartheta e^{-\sigma} A',$$

Dividing one by the other:

$$\begin{array}{ll} \textit{imaginary} & \vartheta^2 e^{-2\sigma} = 2 \frac{\kappa_R \sin(KR) + K \cos(KR)}{\kappa_R \sin(KR) - K \cos(KR)} & \textit{real} \end{array}$$

What have we done ???

 \bigcirc Math: imposed boundary conditions left and right ($u_{I}(0) = 0 \& B' = 0$) \bigcirc Physics: assumed only α -decay, no α -capture (un-decay)

Gamow's Simple Model

 \bigcirc Re-do, not assuming B' = 0:

$$\begin{aligned} A' &= \frac{\vartheta e^{-\sigma} A}{4\sqrt{\kappa_R}} \left[\kappa_R \sin(KR) - K\cos(KR) \right] + \frac{\vartheta^* e^{\sigma} A}{4\sqrt{\kappa_R}} \left[\kappa_R \sin(KR) + K\cos(KR) \right], \\ &= \frac{\vartheta e^{\sigma} A\cos(KR)}{4\sqrt{\kappa_R}} \left[\kappa_R \tan(KR) - K - 2ie^{2\sigma} \left[\kappa_R \tan(KR) + K \right] \right], \\ B' &= \frac{\vartheta^* e^{-\sigma} A}{4\sqrt{\kappa_R}} \left[\kappa_R \sin(KR) - K\cos(KR) \right] + \frac{\vartheta e^{\sigma} A}{4\sqrt{\kappa_R}} \left[\kappa_R \sin(KR) + K\cos(KR) \right], \\ &= \frac{\vartheta^* e^{\sigma} A\cos(KR)}{4\sqrt{\kappa_R}} \left[\kappa_R \tan(KR) - K + 2ie^{2\sigma} \left[\kappa_R \tan(KR) + K \right] \right]. \end{aligned}$$

This implies that $|A'|^2 = |B'|^2$! For B' = 0, the real and imaginary parts must vanish separately: $\kappa_R \tan(KR) - K = 0$ and $\kappa_R \tan(KR) + K = 0$, K = 0, *i.e.*, $E = -V_0$.

Extra!

Gamow's Simple Model

 \bigcirc Consider the amplitude of the α -decay component:

$$A' = \frac{\vartheta e^{\sigma} A \cos(KR)}{4\sqrt{\kappa_R}} \Big[\kappa_R \tan(KR) - K - 2ie^{2\sigma} \big[\kappa_R \tan(KR) + K \big] \Big],$$

This stems from the wave-function within the barrier

$$u_{II}(r) = \frac{C e^{-\sigma}}{\sqrt{\kappa(r)}} e^{-\int_b^r dr \,\kappa(r)} + \frac{D e^{\sigma}}{\sqrt{\kappa(r)}} e^{\int_b^r dr \,\kappa(r)}$$

Solution: where the *C*-term is exponentially suppressed by $e^{-\sigma}$. This is what allows the *approximation*, which produces

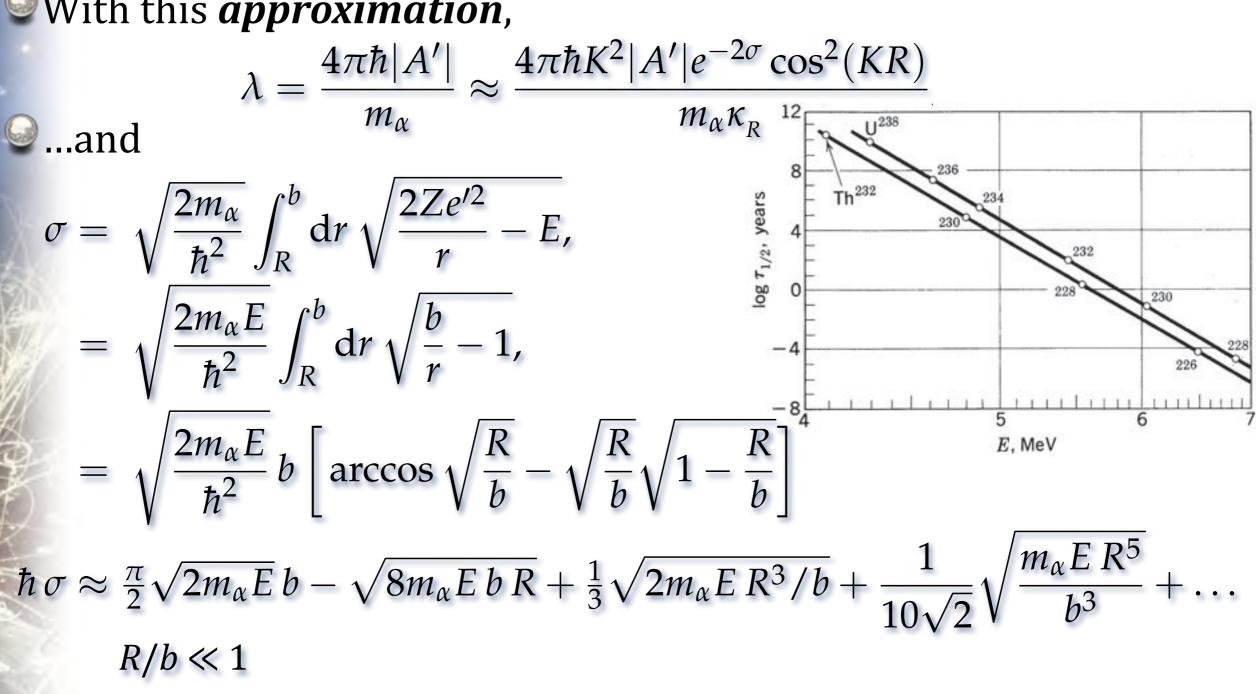
$$A' \approx \frac{\vartheta e^{\sigma} A K \cos(KR)}{2\sqrt{\kappa_R}}$$

and is the oft-quoted result [Gamow, 1928]

...and which turns out to agree with experiments *very well*!

Gamow's Simple Model

With this *approximation*,



Gamow's Model—Exactly

Return to the radial equation:

$$\frac{d^2 R}{dr^2} + \frac{2}{r} \frac{dR}{dr} + \left[K^2 - \frac{\ell(\ell+1)}{r^2} \right] R = 0,$$

The Bessel equation. Use $j_\ell(Kr)$ —not $n_\ell(Kr)$ — for $0 \le r \le$
For $r > R$, substitute $R(r) = r^\ell e^{-\beta r} f(r)$

 $rf'' + [2(\ell+1) - 2\beta r]f' - [(2\beta(\ell+1) + 4Ze'^2m_{\alpha}/\hbar^2) + (\beta^2 + 2m_{\alpha}E/\hbar^2)r]f = 0.$ Set $\beta^2 = -2m_{\alpha}E/\hbar$, to obtain

 $zf''(z) + [2(\ell+1) - z]f'(z) - [(\ell+1) + 2Ze'^2m_{\alpha}/\beta\hbar^2)]f(z) = 0.$ The confluent hypergeometric equation. In fact, the Bessel equation is a(nother) special case of the CHEq.

$$R_{\text{out}}(r) = r^{\ell} e^{-\beta r} \Big[B_1 F_1 \big({\ell+1+w \atop 2\ell+2}; 2\beta r \big) + C r^{-2\ell-1} {}_1 F_1 \big({w-\ell \atop -2\ell}; 2\beta r \big) \Big].$$

Extra!

R.

Gamow's Model—Exactly

Using the asymptotic behavior of the confluent hypergeometric:

$$\begin{aligned} R_{\text{out}}(r) \sim \frac{Fr^{-(w+1)}e^{-\beta r}}{\text{incoming}} + \frac{Gr^{w-1}e^{+\beta r}}{\text{outgoing}} & \beta^2 = -2m_{\alpha}E/\hbar < 0 \\ F = B\left(\frac{e^{-i\pi}}{2\beta}\right)^{w+\ell+1} \frac{\Gamma(2\ell+2)}{\Gamma(\ell+1+w)} + C\left(\frac{e^{-i\pi}}{2\beta}\right)^{w-\ell} \frac{\Gamma(\ell+1+w)\sin[\pi(\ell+w)]}{\Gamma(2\ell+1)\sin[2\ell\pi]}, \\ G = B(2\beta)^{w-\ell-1} \frac{\Gamma(2\ell+2)}{\Gamma(\ell+1+w)} + C(2\beta)^{w-\ell} \frac{\Gamma(\ell+1-w)\sin[\pi(\ell-w)]}{\Gamma(2\ell+1)\sin[2\ell\pi]}. \end{aligned}$$

For a purely outgoing wave, we need $F \approx 0$, so that $\Gamma^2(2\ell+1) = \Gamma^2(2\ell+1) \sin[2\ell\pi]$

$$\approx B \frac{1}{(2\beta)^{2\ell+1}} \frac{1}{\Gamma^2(\ell+1+w) \sin[\pi(\ell+w)]'}$$

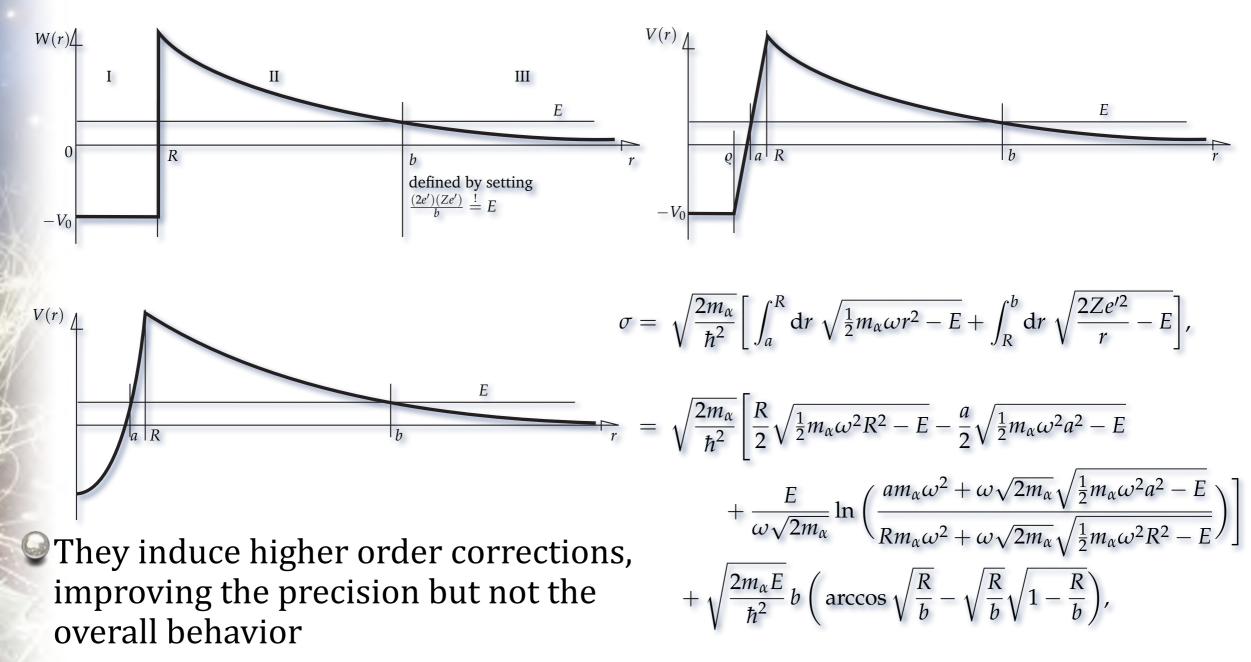
Note that $w = 2Ze'^2 m_{\alpha}/\beta\hbar^2$ is imaginary

 \bigcirc Use $\Delta R(r) = 0 = \Delta R'(r)$ matching conditions @ r = R

Setting $F \approx 0$ leaves only 2 constants + *E*, w/2+1 constraints

Improvements

Modify the model:



Quantum Mechanics II

Now, go forth and

Tristan Hübsch

<u>calculate</u>.

Department of Physics and Astronomy, Howard University, Washington DC <u>http://physics1.howard.edu/~thubsch/</u>