Quantum Mechanics II

Time-Dependent Physics

Energy-Time Indeterminacy;
 Quantum Beats; Kaons and Neutrinos

Department of Physics and Astronomy, Howard University, Washington DC http://physics1.howard.edu/~thubsch/

Time-Dependent Phenomena

Energy-Time Indeterminacy

Q Heisenberg's indeterminacy relations $\Delta_{Q} \Delta_{P} \geq 1 / 2 \hbar$
Q Often, as "dual variables in Fourier transformation"
QCartesian coordinates, $\mathscr{F}: f(x) \rightarrow F\left(k_{x}\right)$, and $k_{x}:=p_{x} / \hbar . \cdots h$ owever...
QTypically, $\mathscr{F}: f(t) \rightarrow F(\omega)$, and $\omega:=\left(E_{2}-E_{1}\right) \hbar$, and so $\omega \neq E \hbar$
QBallentine: energy may be shifted $E \rightarrow E+E_{0}$, with $E_{0}=$ const. arbitrary
Q But, so can $p \rightarrow p+p_{0}$: for a fixed mass, this is just a Galilean boost.
QSometimes, as "canonically conjugate variables"
Q No general precise derivation (dimensional analysis does check out)
Q Not general enough...

Time-Dependent Phenomena

General Indeterminacy Relations

QRobertson ('29), Schrödinger ('30), Jackiw \& Carruthers+Nieto ('68):
Q Given two Hermitian operators, define the third one as

$$
\begin{aligned}
& \widehat{C}:=-i[\widehat{A}, \widehat{B}]=-i[(\widehat{A}-\langle\widehat{A}\rangle),(\widehat{B}-\langle\widehat{B}\rangle)] \\
& \begin{aligned}
0 \leqslant & \left\langle([\widehat{A}-\langle\widehat{A}\rangle]-i \xi[\widehat{B}-\langle\widehat{B}\rangle])^{\dagger}([\widehat{A}-\langle\widehat{A}\rangle]-i \xi[\widehat{B}-\langle\widehat{B}\rangle])\right\rangle \\
& \left.\left.=\langle | \widehat{A}-\left.\langle\widehat{A}\rangle\right|^{2}\right\rangle-i \xi\langle[\widehat{A}-\langle\widehat{A}\rangle, \widehat{B}-\langle\widehat{B}\rangle]\rangle+\xi^{2}\langle | \widehat{B}-\left.\langle\widehat{B}\rangle\right|^{2}\right\rangle \\
& =\left(\Delta_{A}\right)^{2}+\xi\langle\widehat{C}\rangle+\xi^{2}\left(\Delta_{B}\right)^{2}
\end{aligned}
\end{aligned}
$$

True for all ξ, this is true for $\min (\xi)=-\langle\widehat{C}\rangle / 2\left(\Delta_{B}\right)^{2}$

$$
\begin{gathered}
=\left(\Delta_{A}\right)^{2}-\frac{\langle\widehat{C}\rangle^{2}}{2\left(\Delta_{B}\right)^{2}}+\frac{\langle\widehat{C}\rangle^{2}}{4\left(\Delta_{B}\right)^{2}}=\left(\Delta_{A}\right)^{2}-\frac{\langle\widehat{C}\rangle^{2}}{4\left(\Delta_{B}\right)^{2}} \\
\left(\Delta_{A}\right)^{2} \geqslant \frac{\langle\widehat{C}\rangle^{2}}{4\left(\Delta_{B}\right)^{2}} \quad\left(\Delta_{A}\right)^{2}\left(\Delta_{B}\right)^{2} \geqslant \begin{array}{c}
\frac{1}{4}\langle\widehat{C}\rangle^{2} \\
\left(\hat{C}^{2}=\hat{C}\right)
\end{array} \quad \Delta_{A} \Delta_{B} \geqslant \frac{1}{2}|\langle[\widehat{A}, \widehat{B}]\rangle| \\
\text { state-dependent }
\end{gathered}
$$

Time-Dependent Phenomena

Energy-Time Indeterminacy

Q Heisenberg's indeterminacy relations $\Delta_{Q} \Delta_{P} \geq 1 / 2 \hbar$
QOften, as "dual variables in Fourier transformation"
QCartesian, $\mathscr{F}: f(x) \rightarrow F\left(k_{x}\right)$, and $k_{x}:=p_{x} / \hbar$. ...however....
QTypical, $\mathscr{F}: f(t) \rightarrow F(\omega)$, and $\omega:=\left(E_{2}-E_{1}\right) \hbar$, and so $\omega \neq E \hbar$
Q Ballentine: energy may be shifted $E \rightarrow E+E_{0}$, with $E_{0}=$ const. arbitrary
Q But, so can $p \rightarrow p+p_{0}$: for a fixed mass, this is just a Galilean boost.
Q Sometimes, as "canonically conjugate variables"
Q No general precise derivation (dimensional analysis does check out)
Q Not general enough...
Q Nonrelativistic Quantum Mechanics
Q coordinates are eigenvalues (expectation values) of Hermitian operators
Q time is not.

> Time is a parameter …on which everything else depends

Time-Dependent Phenomena

Energy-Time Indeterminacy

Q Wolfgang Pauli's "TH-theorem" (1933)
Q Suppose time was the eigenvalue of a Hermitian operator, canonically conjugate to the Hamiltonian

$$
\begin{aligned}
{[\widehat{T}, \widehat{H}] } & =i \hbar \quad \widehat{U}_{\varepsilon}:=\exp \{-i \varepsilon \widehat{T} / \hbar\} \\
{\left[\widehat{H}, \widehat{U}_{\varepsilon}\right] } & =[\widehat{H}, \widehat{T}] \frac{\partial \widehat{U}_{\varepsilon}}{\partial \widehat{T}}=(-i \hbar) \widehat{U}_{\varepsilon}(-i \varepsilon / \hbar)=-\varepsilon \widehat{U}_{\varepsilon}
\end{aligned}
$$

Then,

$$
\widehat{H}|E\rangle=E|E\rangle \quad \widehat{H}\left(\widehat{U}_{\varepsilon}|E\rangle\right)=\left(\widehat{U}_{\varepsilon} \widehat{H}-\varepsilon \widehat{U}_{\varepsilon}\right)|E\rangle=(E-\varepsilon)\left(\widehat{U}_{\varepsilon}|E\rangle\right)
$$

Time-Dependent Phenomena

Energy-Time Indeterminacy

QWolfgang Pauli's "TH-theorem" (1933)
Q Suppose time was the eigenvalue of a Hermitian operator, canonically conjugate to the Hamiltonian

$$
\begin{aligned}
{[\widehat{T}, \widehat{H}] } & =i \hbar \quad \widehat{U}_{\varepsilon}:=\exp \{-i \varepsilon \widehat{T} / \hbar\} \\
{\left[\widehat{H}, \widehat{U}_{\varepsilon}\right] } & =[\widehat{H}, \widehat{T}] \frac{\partial \widehat{U}_{\varepsilon}}{\partial \widehat{T}}=(-i \hbar) \widehat{U}_{\varepsilon}(-i \varepsilon / \hbar)=-\varepsilon \widehat{U}_{\varepsilon}
\end{aligned}
$$

Then,

$$
\widehat{H}|E\rangle=E|E\rangle \quad \widehat{H}\left(\widehat{U}_{\varepsilon}|E\rangle\right)=\left(\widehat{U}_{\varepsilon} \widehat{H}-\varepsilon \widehat{U}_{\varepsilon}\right)|E\rangle=(E-\varepsilon)\left(\widehat{U}_{\varepsilon}|E\rangle\right)
$$

$$
\widehat{U}_{\varepsilon}|E\rangle=|E-\varepsilon\rangle \quad \varepsilon \rightarrow \infty \Rightarrow \exists \text { normalized state with } E \rightarrow-\infty
$$

$$
\Rightarrow \text { no ground-state with definite energy! }
$$

Thus, time cannot be the eigenvalue of a Hermitian operator.

Time-Dependent Phenomena

Energy-Time Indeterminacy

Qo, what should a relationship such as " $\Delta_{E} \Delta_{\tau} \geq i \hbar$ " mean?
QIt is not time itself that is observed, but sequential variations in some other observable...
Q ...which then serves as a clock.
Q Consider then an observable that is not stationary

$$
[\widehat{H}, \widehat{R}] \neq 0 \quad \Delta_{R} \Delta_{H} \geqslant \frac{1}{2}|\langle[\widehat{H}, \widehat{R}]\rangle|=\frac{\hbar}{2}\left|\frac{\mathrm{~d}\langle\widehat{R}\rangle}{\mathrm{d} t}\right|
$$

S. Mandelstam \& I. Tamm

Then, define:

$$
\tau_{R}:=\Delta_{R}\left|\frac{\mathrm{~d}\langle\widehat{R}\rangle}{\mathrm{d} t}\right|^{-1} \quad \tau_{R} \Delta_{H} \geqslant \frac{1}{2} \hbar
$$

This τ_{R} serves as a characteristic time (period) of any phenomenon in which variations in the observable R serve as a clock. Whence "clock-observable."

Time-Dependent Phenomena

Quantum Beats

QRecall the spin- $1 / 2$ system (particle) with $\mu=\gamma S$
Q...gaining/losing $1 / 2 \gamma \not \hbar \boldsymbol{B} \cdot \sigma$ energy in the \boldsymbol{B}-field
Q...with $\boldsymbol{\mu}$ precessing with frequency $\omega=\gamma|\boldsymbol{B}|$

Q A linear combination of the two states is not stationary

$$
\widehat{U}_{t}\left[\begin{array}{l}
c_{+} \\
c_{-}
\end{array}\right]=e^{-i \omega t \sigma_{z}}\left[\begin{array}{l}
c_{+} \\
c_{-}
\end{array}\right]=\left[\begin{array}{l}
c_{+} e^{-i \omega t} \\
c_{-} e^{+i \omega t}
\end{array}\right]
$$

Q Similar result for all 2-state systems
Suppose this linear combination decays into a lower state
OThe two emitted photons interfere
0 Int. \propto Prob. $\propto \cos \left(\omega_{21} \mathrm{t}\right)$ modulated decay pattern

Time-Dependent Phenomena

Quantum Beats

Q Treating the EM radiation classically,

$$
\begin{aligned}
& I \propto \sin \left(\omega_{20} t\right)+\sin \left(\omega_{10} t\right) \\
& =2 \sin \left(\frac{\omega_{20}+\omega_{10}}{2} t\right) \sin \left(\frac{\omega_{20}-\omega_{10}}{2} t\right) \\
& \text { "carrier" "AM" = beats }
\end{aligned}
$$

Q A similar effect should
 also exist in the flipped situation...
...while the EM radiation is treated classically
But, V-type atoms do exhibit beats as predicted...

\ldots while Λ-type atoms do not.

Time-Dependent Phenomena

Quantum Beats

Q The full quantum description of the two cases uses the final states:

$$
\begin{gathered}
\alpha_{1}\left|E_{0} ; \omega_{10}\right\rangle+\alpha_{2}\left|E_{0} ; \omega_{20}\right\rangle \\
\beta_{1}\left|E_{1} ; \omega_{21}\right\rangle+\beta_{2}\left|E_{0} ; \omega_{20}\right\rangle \\
\text { EM radiation }
\end{gathered}
$$

Beats are caused by interference
...for which the probability amplitudes are

QUseful when E_{1} and E_{2} cannot be resolved experimentally

Time-Dependent Phenomena

Kaons

Q Two neutral, spin-0 mesons
Qone decays into two pions, after $8.958 \times 10^{-11} \mathrm{~s}=\mathrm{K}_{\mathrm{S}} \quad \mathrm{CP}=+1$
Q the other into three pions, after $5.114 \times 10^{-8} \mathrm{~s} \quad=K_{L} \quad C P=-1$
Q although they are created in same collision processes
Qoso, K_{S} and K_{L} are decay eigenstates
Q The creation eigenstates are $K_{0}=\left(K_{S}+K_{L}\right)$ and $\bar{K}_{0}=\left(K_{S}-K_{L}\right)$
Created $50 \%-50 \%$, the ratio soon depletes

$$
\frac{N\left(K_{S}\right)}{N\left(K_{L}\right)}=\frac{e^{-t / \tau_{S}}}{e^{-t / \tau_{L}}}=\exp \left\{-\frac{t}{\tau_{S}}+\frac{t}{\tau_{L}}\right\} \approx \exp \left\{-569.9 \frac{t}{\tau_{\mathrm{L}}}\right\}
$$

Q which drops to 1.447×10^{-5} after just 1 ns!
QHowever, virtual decay-undecay processes can oscillate $K_{S} \leftrightarrows K_{L}$
Q...and yield two-pion decays even after many seconds of flight.

Q This regeneration violates $C P$ conservation needed for
Big-Bang baryogenesis

Time-Dependent Phenomena

Neutrino Oscillations
$Q \beta$-decay: $\mathrm{zX}^{\mathrm{Z}} \rightarrow{ }_{\mathrm{Z} \pm 1} \mathrm{Y}+e^{ \pm}$(i.e., $n^{0} \rightarrow p^{+}+e^{-}$or $p^{+} \rightarrow n^{0}+e^{+}$) cannot satisfy both energy and momentum conservation
QW. Pauli (1930): a third (very light, neutral) particle
E. Fermi: "small neutron" = neutrino

Q $n^{0} \rightarrow p^{+}+e^{-}+\bar{v}$ or $p^{+} \rightarrow n^{0}+e^{+}+v$
Q In the next 1-2 decades, cosmic ray sources:

$$
\begin{aligned}
\pi^{-} & \rightarrow \mu^{-}+\bar{v}_{\mu} \\
& \rightarrow\left(e^{-}+\bar{v}_{e}+v_{\mu}\right)+\bar{v}_{\mu} \\
\pi^{+} & \rightarrow \mu^{+}+v_{\mu} \\
& \rightarrow\left(e^{+}+v_{e}+\bar{v}_{\mu}\right)+v_{\mu}
\end{aligned}
$$

There should be twice as many $\operatorname{cosmic} v_{\mu}{ }^{\prime} \mathrm{s}$ than $v_{e}{ }^{\prime} \mathrm{s}$.
Q Vertically, yes; $\approx 2: 1$. Horizontally (along the horizon), no; $\approx 1: 1$

Time-Dependent Phenomena

Neutrino Oscillations
QBy 1938, Hans Bethe: "Carbon cycle" \& "pp-process"
$\mathrm{H} \rightarrow \mathrm{He}$ fusion in stars such as the Sun
Q...with a detailed spectrum of neutrinos predicted
Q...of which only $\sim 1 / 3 v_{e}^{\prime}$ s arrive to Earth ($v_{\mu}{ }^{\prime}$ s not detected)

QCreation \& detection $=\hat{H}_{I}$-eigenstates, v_{e} and v_{μ}
QPropagation/evolution $=\hat{H}_{0}$-eigenstates, say " 1 " and " 2 "
Q ...these are also the mass-eigenstates
Created as, say, v_{e} :

$$
\begin{aligned}
& e^{-i t \hat{H}_{0} / \hbar}\left(\left|v_{e} ; 0\right\rangle:=|" 1+2 " ; 0\rangle\right)=|" 1+2 " ; t\rangle \\
&=C_{1} e^{-i E_{1} t / \hbar}|1\rangle+C_{2} e^{-i E_{2} t / \hbar}|2\rangle \\
& P_{\alpha}:=\mid\left.[\cos (\alpha)\langle 1|+\sin (\alpha)\langle 2|]|" 1+2 " ; t\rangle\right|^{2} \\
&=\left|C_{1}\right|^{2} \cos ^{2}(\alpha)+\left|C_{2}\right|^{2} \sin ^{2}(\alpha)+\sin (2 \alpha) \Re e\left[C_{1} C_{2}^{*} e^{-i\left(E_{1}-E_{2}\right) t / \hbar}\right]
\end{aligned}
$$

Time-Dependent Phenomena

Neutrino Oscillations $P_{\alpha}:=\mid\left.[\cos (\alpha)\langle 1|+\sin (\alpha)\langle 2|]\left|{ }^{"} 1+22^{\prime \prime} ; t\right\rangle\right|^{2}$

$$
=\left|C_{1}\right|^{2} \cos ^{2}(\alpha)+\left|C_{2}\right|^{2} \sin ^{2}(\alpha)+\sin (2 \alpha) \Re e\left[C_{1} C_{2}^{*} e^{-i\left(E_{1}-E_{2}\right) t / \hbar}\right]
$$

QSo, if the neutrino was initially in the "opposite" linear combination, $-\sin (\alpha)|1\rangle+\cos (\alpha)|2\rangle$, (the $\alpha+\pi / 2$ state)

$$
P_{\left|\alpha+\frac{\pi}{2}\right\rangle \rightarrow|\alpha\rangle}=\sin ^{2}(2 \alpha) \sin ^{2}\left(\frac{1}{2} \omega_{12} t\right), \quad \omega_{12}:=\frac{E_{1}-E_{2}}{\hbar}
$$

Q The neutrino oscillates
...provided:
QThe two stationary states are not degenerate, $E_{1} \neq E_{2}, \omega_{12} \neq 0$
Q The interaction eigenstates are not equal to the stationary states, $\alpha \neq 0$
and $E_{1}-E_{2}=\sqrt{|\vec{p}|^{2} c^{2}+m_{1}^{2} c^{4}}-\sqrt{|\vec{p}|^{2} c^{2}+m_{2}^{2} c^{4}} \approx \frac{\left(m_{1}^{2}-m_{2}^{2}\right) c^{4}}{2 \bar{E}}$

