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Energy-Time Indeterminacy

Time-Dependent Phenomena

Heisenberg’s indeterminacy relations ∆Q ∆P ≥ ½ħ
Often, as “dual variables in Fourier transformation”

Cartesian coordinates, F :  f(x) → F(kx), and kx := px/ħ.
Typically, F :  f(t) → F("), and " := (E2 – E1)ħ, and so " ≠ Eħ
Ballentine: energy may be shifted E → E + E0 , with E0 = const. arbitrary
But, so can p → p + p0 : for a fixed mass, this is just a Galilean boost.

Sometimes, as “canonically conjugate variables”
No general precise derivation (dimensional analysis does check out)
Not general enough…
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…however…
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General Indeterminacy Relations

Time-Dependent Phenomena

Robertson (’29), Schrödinger (’30), Jackiw & Carruthers+Nieto (’68):
Given two Hermitian operators, define the third one as

True for all ", this is true for 

3

bC := �i
⇥ bA , bB

⇤
= �i

⇥
( bA�h bAi) , (bB�hbBi)

⇤b �
⇥ b b ⇤ �

⇥ b�h bi b�hbi
⇤

0 6
D ⇣

[ bA�h bAi]� ix[bB�hbBi]
⌘† ⇣

[ bA�h bAi]� ix[bB�hbBi]
⌘ ED ⇣

b b b b
⌘ ⇣

b b b b
⌘ E

=
D�� bA�h bAi

��2
E
� ix

D⇥ bA�h bAi, bB�hbBi
⇤E

+ x

2
D��bB�hbBi

��2
ED�� b b ��

E D⇥ b

= (DA)
2 + xh bCi+ x

2(DB)
2 h bi

min(x) = �h bCi/2(DB)
2�h bi

= (DA)
2 � h bCi2

2(DB)2 +
h bCi2

4(DB)2 = (DA)
2 � h bCi2

4(DB)2

(DA)
2 > h bCi2

4(DB)2

b b

(DA)
2(DB)

2 > 1
4h bCi

2 DADB > 1
2

���
⌦
[ bA, bB]

↵���

state-dependent
≥0

(Ĉ † = Ĉ )



Q
M
II

Energy-Time Indeterminacy

Time-Dependent Phenomena

Heisenberg’s indeterminacy relations ∆Q ∆P ≥ ½ħ
Often, as “dual variables in Fourier transformation”
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Typical, F :  f(t) → F("), and " := (E2 – E1)ħ, and so " ≠ Eħ
Ballentine: energy may be shifted E → E + E0 , with E0 = const. arbitrary
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Sometimes, as “canonically conjugate variables”
No general precise derivation (dimensional analysis does check out)
Not general enough…

4

…however…

Nonrelativistic Quantum Mechanics
coordinates are eigenvalues (expectation values) of Hermitian operators
time is not.

Time is a parameter
…on which everything else depends
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Energy-Time Indeterminacy

Time-Dependent Phenomena

Wolfgang Pauli’s “TH-theorem” (1933)
Suppose time was the eigenvalue of a Hermitian operator,
canonically conjugate to the Hamiltonian

Then,

5

⇥ bT ,

bH
⇤
= ih̄

⇥ ⇤ ⇥
bU

#

:= exp

�
�i#bT/h̄

 

⇤ ⇥ ⇤ ⇥

⇥ b b ⇤ b

⇥ bH ,

bU
#

⇤
=

⇥ bH ,

bT
⇤

∂

bU
#

∂

bT
�

� b  

b
#

b = (�ih̄) bU
#

(�i#/h̄) =) = �#

bU
#⇥ b b ⇤ ⇥ b b

bH |Ei = E |Ei

⇤

b

b

b b

bH
�

bU
#

|Ei
�

=
�

bU
#

bH � #

bU
#

�

|Ei

b

i = (E � #)
�

bU
#

|Ei
�

⇥

b

= E |



Q
M
II

Energy-Time Indeterminacy

Time-Dependent Phenomena

Wolfgang Pauli’s “TH-theorem” (1933)
Suppose time was the eigenvalue of a Hermitian operator,
canonically conjugate to the Hamiltonian

Then,

Thus, time cannot be the eigenvalue of a Hermitian operator.
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Energy-Time Indeterminacy

Time-Dependent Phenomena

So, what should a relationship such as “∆E ∆# ≥ iħ” mean?
It is not time itself that is observed, but sequential variations in some 
other observable…
…which then serves as a clock.

Consider then an observable that is not stationary

Then, define:

This  #R  serves as a characteristic time (period) of any 
phenomenon in which variations in the observable R
serve as a clock. Whence “clock-observable.”
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Quantum Beats

Time-Dependent Phenomena

Recall the spin-½ system (particle) with ! = !S
…gaining/losing  ½!ħB·" energy in the B-field
…with  !  precessing with frequency " = !|B|

A linear combination of the two states is not stationary

Similar result for all 2-state systems
Suppose this linear
combination decays
into a lower state
The two emitted
photons interfere
Int. ∝ Prob. ∝ cos(#21 t)
modulated decay pattern
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Quantum Beats

Time-Dependent Phenomena

Treating the EM radiation classically,

A similar effect should
also exist in the flipped
situation…
…while the EM radiation
is treated classically
But, V-type atoms do exhibit
beats as predicted…
…while $-type atoms do not.
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EM radiation

Quantum Beats

Time-Dependent Phenomena

The full quantum description of the
two cases uses the final states:

Beats are caused by interference
…for which the probability amplitudes are

Useful when E1 and E2 cannot be resolved experimentally
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Kaons

Time-Dependent Phenomena

Two neutral, spin-0 mesons
one decays into two pions, after 8.958×10–11 s
the other into three pions, after 5.114×10–8 s
although they are created in same collision processes

So, KS and KL are decay eigenstates
The creation eigenstates are K0 = (KS + KL) and K0 = (KS – KL)

Created 50%-50%, the ratio soon depletes

which drops to 1.447×10–5 after just 1 ns!
However, virtual decay-undecay processes can oscillate KS ⇆ KL
…and yield two-pion decays even after many seconds of flight.
This regeneration violates CP conservation
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Neutrino Oscillations

Time-Dependent Phenomena

$-decay: ZX → Z±1Y + e±   (i.e.,  n0 → p+ + e–  or  p+ → n0 + e+)
cannot satisfy both energy and momentum conservation
W. Pauli (1930): a third (very light, neutral) particle
E. Fermi: “small neutron” = neutrino
n0 → p+ + e– + %  or  p+ → n0 + e+ + %
In the next 1-2 decades, cosmic ray sources:

There should be twice as many cosmic %&’s than %e’s.
Vertically, yes; ≈2:1.
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Neutrino Oscillations

Time-Dependent Phenomena

By 1938, Hans Bethe: “Carbon cycle” & “pp-process”
H→He fusion in stars such as the Sun
…with a detailed spectrum of neutrinos predicted
…of which only ∼' %e’s arrive to Earth (%&’s not detected)
Creation & detection = ĤI-eigenstates,  %e  and  %&
Propagation/evolution = Ĥ0-eigenstates, say “1” and “2”

…these are also the mass-eigenstates
Created as, say, %e:
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Neutrino Oscillations

Time-Dependent Phenomena

So, if the neutrino was initially in the “opposite” linear 
combination,   – sin(()|1 � + cos(()|2 �, (the ( + "/) state)

The neutrino oscillates

…provided:
The two stationary states are not degenerate, E1 ≠ E2, "12 ≠ 0
The interaction eigenstates are not equal to the stationary states, $ ≠ 0
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Quantum Mechanics II

Now, go forth and

calculate!!
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