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Decay Probability: A Century-Old Result

Time-Dependent Phenomena

Many systems are unstable; |!|2 need not be conserved.
“State decay” is really state transition
General expectation: Prob(u(t2)|u(t1)) = Prob(t2 – t1) if t2 > t1.
Also, expect: Prob(u(t3) & u(t2)|u(t1)) = Prob(u(t3)|u(t1))

whenever t3 > t2 > t1.
Assumption(!): if u(t3) = true, then u(t2) = true also.

Bayes’ rule (re-read section 1.5):
Prob(u(t3) & u(t2)|u(t1)) = Prob(u(t3)|u(t2) & u(t1)) · Prob(u(t2)|u(t1))
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Time-Dependent Phenomena

Many systems are unstable; |!|2 need not be conserved.
“State decay” is really state transition
General expectation: Prob(u(t2)|u(t1)) = Prob(t2 – t1) if t2 > t1.
Also, expect: Prob(u(t3) & u(t2)|u(t1)) = Prob(u(t3)|u(t1))

whenever t3 > t2 > t1.
Assumption(!): if u(t3) = true, then u(t2) = true also.

Bayes’ rule (re-read section 1.5):
Prob(u(t3) & u(t2)|u(t1)) = Prob(u(t3)|u(t2) & u(t1)) · Prob(u(t2)|u(t1))

The “general expectation” now implies that
Prob(t3–t1) = Prob(t3–t2) · Prob(t2–t1)

Also, Prob(~u(t2)|u(t1)) = 1–Prob(u(t2)|u(t1))
Then: Prob(u(t2)|u(t1)) = exp{–!(t2 – t1)}
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E. Rutherford
Exponential law of decay probabilities

Caution!
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Decay Probability: the Quantum Theory

Time-Dependent Phenomena

A system evolves: |!(t) � = Ût|!(0) � = e–iĤt/ħ|!(0) �
The amplitude of probability that the system has not decayed

A0(t) = � !(0)|e–iĤt/ħ|!(0) �  &  Pu(t) = Prob(!(0)|!(0)) = |A0(t)|2

Denote � Ĥ �=� !(0)|Ĥ|!(0) �. Then

Where could Rutherford have gone wrong?
…after all, the exponential law is at the heart of the decay-clock
…vindicated by experiment, time and time again…
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Decay Probability: the Quantum Theory

Time-Dependent Phenomena

Well, write |!(t) � = e–iĤt/ħ|!(0) �= A0(t)|!(0) �+ |#(t) �
…where � !(0)|"(t) � = 0; |"(t) � denotes “all else,”  ∟  to |!(0) �.

Then, evolve from t = 0 to t > 0, to (t’+t) > t > 0.

So, if and only if � !(0)|e–iĤt’/ħ|#(t) �= 0,  Pu(t) = e –!t.
Indeed, � !(0)|e–iĤt’/ħ|#(t) � = 0 in nuclear decays: the 
probability that a nucleus spontaneously regenerates is nil.

…though, not unheard of: #-decay may be followed by #-(re)capture.
The assumption “if u(t3) = true, then u(t2) = true also” need not hold
This “intermediate (virtual) regeneration” turns Pu(t) ≠ e –!t.
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Decay Probability: the Quantum Theory

Time-Dependent Phenomena

A “dual” description, in terms of energies
Use an energy basis Ĥ|En � = En|En �, where “n” is formal

This may be written as
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A Typo and an Integral

Time-Dependent Phenomena

In Ballentine’s Eq. (12.26), inside the integral, En → E.

He says “(12.26) could be evaluated as a contour integral…” 
Why a contour integral?   Why not try Mathematica?
Well,

This is indeed the standard result [Ballentine, (12.29)]
and provides for the exponential decay result: P(t) = |A(t)|2 = e –!t
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A Typo and an Integral

Time-Dependent Phenomena

For the record, notice that the E-integration extends (– ∞, + ∞)
The Lorentz distribution does extend over all of that region

However…
There must exist Emin > – ∞
The E < Emin portion is unphysical
Typically, for r → ∞, E → 0
So Emin ≤ 0
If Emin = 0, no bound states
If Emin < 0, the system has both
bound & scattering states

The E-distribution
(Lorentz or other) therefore should be cut-off below some Emin.

This will result in a non-exponential decay law…
…but this also invites other modifications to the Lorentz distribution
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Ci(z) := �
Z •

z

dt
t

cos(t) Si(z) := �
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t

sin(t)

A Typo and an Integral

Time-Dependent Phenomena

Cutting the Lorentz distribution off below E = 0 produces
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A Typo and an Integral

Time-Dependent Phenomena

Cutting the Lorentz distribution off below E = 0 produces
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A Typo and an Integral

Time-Dependent Phenomena

However, do the (Math Methods standard) contour integral.
We want:

In the complex E-plane, this goes along the real axis.
Where are the poles?
Not on the path of integration. No need for “principal parts.”
Which way can we close the contour?

Upper half-plane (with Im(E) > 0 ), or
Lower half-plane (with Im(E) < 0 )?

This would diverge for Im(E) → +∞.
So, close the contour in the lower half-plane.
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An Integral and a Typo

Eq. (12.26) in Ballentine’s text should read

A(t) =
X

n

|hEn| ui|2 e�iEnt/~ =
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�1
⌘(E) e�iEt/~dE, (1)

as I thought it should (the subscripted “En” in “e�iEnt/~” within the integral being a copy-and-paste

holdover from the previous, summation expression), as well as the limits extending from �1 to

+1, since one cannot a priori exclude a value of the energy, without knowing what the minimum

in the potential is. Now, the distribution
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does not diverge along the real axis, so Ballentine’s suggestion of using a contour integral seems out

of place; indeed, mechanized integration packages (MathematicaTM, for one) give rather complicated-

looking results. Nevertheless, let us follow Ballentine’s suggestion, and set up the contour compu-

tation as has been done before computer-aided “methods” of integration.

The function ⌘(E) has poles o↵ the real axis:
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Furthermore, note that

E ! <e(E) + i=m(E), ) e�iEt/~ ! e�i<eEt/~ e+=mEt/~, (4)

where the second factor diverges for =m(E) > 0 but converges for =m(E) < 0. We thus must close

the contour in the lower half-plane:
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following the semi-circular arc of radius R ! 1, clockwise. This encircles one of the two poles,

and so we have:

A(t) + IC = � 1
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1

A Typo and an Integral

Time-Dependent Phenomena
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A Typo and an Integral

Time-Dependent Phenomena

So, the closed-contour integral equals

The arc-integral, IC, is

For % ∈ (0, –&), sin(%) < 0, so

and
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A Typo and an Integral

Time-Dependent Phenomena

The un-decaying amplitude for the Lorentzian energy 
distribution thus equals

This is exactly the well-known result that Ballentine cites
…and which leads to the exponential decay law, P(t) = e –!t.
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Decay Paradoxes: the Quantum Zeno Effect

Time-Dependent Phenomena

Remember, Pu(t) ≈ 1 – (t/')2

…where ' = ħ/(, and (2 = �(Ĥ –�Ĥ�)2�
Reasoning:

subdivide [0, t] → [0,(t/n), (2t/n), …, t]
Pu(t) = [Pu(t/n)]n = [1 – (t/n')2]n and take the n → ∞ limit
But then, [1 – (t/n')2]n → 1, whereas [1 – (t/n')]n → e –t/'.
So, short-time parabolic decay implies no decay at all for finite time?!?

The (sleight of hand) limit Pu(t) = [Pu(t/n)]n

…is really the product
Pu(t, (n–1)t/n)·Pu((n–1)t/n, (n–2)t/n)· … ·Pu(2t/n, t/n)·Pu(t/n, 0)
…where the system is therefore assumed not to have decayed in all the 
intermediate points, (t/n), (2t/n), …, (n–1)t/n.
When n → ∞, “assumed not to have decayed infinitesimally before t”
in which case it is no surprise it hasn’t decayed infinitesimally later.
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Decay Paradoxes: the Quantum Zeno Effect

Time-Dependent Phenomena

Nevertheless, the meme that “observation prevents a quantum 
system from evolving with e –iĤt/ħ” persists.

In science fiction (“weeping angels” in “Doctor Who” & many others)
In science: see references in http://arXiv.org/abs/0907.4361

Besides the quantum Zeno effect, there is also the anti-Zeno effect
Is this a bonanza of weirdness in quantum physics??

No. The basic mechanism is trivial: it's all about meddling.
It is possible to time
the switching so that
the discharge is caught

in an “early” phase
or in a “late” phase

…and then iterated
(while meddling)

13
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Decay Paradoxes: the Quantum Zeno Effect

Time-Dependent Phenomena

If iterating the early discharge phase:

If iterating the late discharge phase:
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E C L R

prepare

on

off

Consider finally a short time interval [0, T ], with T < ⌧!, subdivide it into a large number of

sub-intervals [0, T
N

], and switch the circuit on-off once within each sub-interval. That is, arrange

so that (TC +TR ) = T
N

, and the circuit goes through N on-off cycles in the short time interval

[0, T ]. For su�ciently many (N � 1) subdivisions, the condition T
N

= (TC +TR )⌧ ⌧! = !�1 is easy

to achieve and the conditions of the above analysis are satisfied. Furthermore, since TR ⌧ TC , it

follows that T
N

= (TC +TR ) ⇡ TC . By a simple induction of the preceding results,

q(T )  q0
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Eq. (17) may be approximated as

q(t)  q0

h
1� 1

2

!2T 2

N2

iN N!1
�����! q0. (19)

This implies that the capacitor remains undischarged and that the electric current does not flow at

all during the time interval [0, T ], even though the electric current can flow at any isolated moment

within the large interval. Metaphorically, the finger meddling inside a toaster never gets burned.

Evidently, the result (19) is the hallmark of a classical Zeno e↵ect, perfectly analogous to the

quantum Zeno e↵ect—together with the preparation stage, which is essential for the quantum

e↵ect [5]. It is in full agreement with classical electrodynamics (electronics) and represents a

paradox only to the näıve intuition. The situation may be understood on examining Fig. 2: the

t

q(t)

t

q(t)

Discharge
deceleration

Figure 2: A sketch of the e↵ect that the frequent switching has on the switched LC/RL circuit

(dark, concatenated curve on the right), as compared with the un-switched LC circuit (dark curve

on the left, light gray on the right).

cos-like discharging of the capacitor in an un-switched LC circuit is seen to be replaced here by an

iterative concatenation of copies of the initial, very short and nearly flat segment. This leads to a

discharging of the capacitor at a pace that is much slower than what happens in the un-switched

LC circuit, in which the capacitor is discharged fully by t = 1
4⌧!. In the N !1 limit of indefinitely

frequent switching, the capacitor does not discharge at all.

— ? —

6

In the opposite case, i.e., when3
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Eq. (17) may be approximated as

q(t)  q0

h
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, and lim
N!1

q(t) = q0 e�
|i0|
q0

t, for t 2 [0, T ]. (21)

tending approximately toward an exponential decay (rather than oscillation!) of the electric charge

in the capacitor. Notice however that the electric discharging ends up being faster than the expo-

nential curve to which it limits. Fig. 3: shows the limiting exponential curve (black on the left,

Discharge
acceleration

Figure 3: A sketch of the e↵ect that the frequent switching and a non-negligible initial current

have on the switched LC/RL circuit; this graph is virtually identical to the one reported in Ref. [7].

grey on the right) and the finite- T
N

curve approximating the tangent with the slope i0 (black on

the right). This result evidently models the similar e↵ects discussed in Refs. [6,7,8], all dubbed the

“anti-Zeno,” “inverse-Zeno” or “Heraclites” e↵ect, emphasizing the relative acceleration as com-

pared to the exponential decay. Metaphorically, the finger meddling inside a toaster gets burned

before the toaster heats up. In turn, the described dynamics is in full agreement with classical

electrodynamics (electronics) and represents a paradox only to the näıve intuition.

— ? —

There are well-known analogies between the classical LC circuit, the classical mechanical linear

harmonic oscillators of various kinds: swings, springs, etc., and so-called small oscillations in the

most general Hamilton-Jacobi theory in classical mechanics and field theory—to all of which we

refer as “lho.” This implies that any lho with an appropriate and momentarily acting “meddling

mechanism” that corresponds to the ideal switch with the shunting resistor described above will

similarly exhibit a classical Zeno or anti-Zeno e↵ect. In turn, this perfectly corresponds to the

general results of Ref. [5] and also to the thermodynamically influenced quantum lho as a system

which also exhibits the quantum Zeno and anti-Zeno e↵ects as discussed in Refs. [9,10]; see below.

3The perhaps contrary-looking conditions (20) and (9) turn out the be perfectly consistent: combining
them into 1

2q0 !2 T
N ⌧ |i0| < 1

2q0! merely states that ! T
N ⌧ 1, i.e., that T

N ⌧ ⌧! as was assumed. Indeed,
we have the hierarchy of time-scales: T

N ⌧ ⌧! < 2⌧! < ⌧i.
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