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1. WKB: Wells and Barriers

Consider the 1-dimensional Schrödinger equation for stationary states:[
− h̄2

2m
d2

dx2
+ V (x)

]
ψ

E
(x) = Eψ

E
(x) . (1.1)

1.1. The solutions

Substituting ψE(x) = eiu(x), where u(x) a complex function, produces

(u′)2 = k2 + iu′′ , where k(x) def= +
√

2m
h̄2

[
E − V (x)

]
, (1.2)

which is a non-linear equation. It can be solved iteratively, starting with the assumption
that u′′ � (u′)2−k2; this defines the 0th order solution:

u′0 = ±k(x) , so u(x) = ±
∫

dx k(x) + C0 ,

where C0 is the constant of integration. The solution to the nonlinear differential equa-
tion (1.2) is then approached by iteratively calculating, for n = 1, 2, 3, . . .:

u′n = ±
√
k2 + iu′′n−1 , so un(x) = ±

∫
dx

√
k2(x) + iu′′n−1(x) + Cn .

The exact solution is then u(x) = limn→∞ un(x), and we obviously must stop at a finite n
for this to be feasible at all.

As it turns out, already n = 1 (the WKB approximation) gives a pretty good approx-
imation:

u1(x) = ±
∫

dx
√
k2(x) + iu′′0(x) + C1 = ±

∫
dx

√
k2(x)± ik′(x) + C1 ,

= ±
∫

dx k(x)

√
1± ik′(x)

k2(x)
+ C1 = ±

∫
dx k(x)

(
1± ik′(x)

2k2(x)
+ . . .

)
+ C1 ,

= ±
∫

dx k(x) + i
2

∫
dx

k′(x)
k(x)

+ . . .+ C1 ,

= ±
∫

dx k(x) + i
2 log[k(x)] + . . .+ C1 .
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At this point, we drop the ellipses reminding us of the dropped terms in the expansion of
the square-root, and express the integration constant as the value of the given integral at
some suitable reference point, x∗, so that

u1(x) = ±
∫ x

x∗

dξ k(ξ) + i
2 log[k(x)] ,

that is, since there are the two solutions with the two signs:

ψ(1)
E

(x) = eiu1(x) =
A√
k(x)

e
i
∫ x

x∗
dx k(x)

+
B√
k(x)

e
−i

∫ x

x∗
dx k(x)

(1.3a)

This is called the WKB solution. For the classically forbidden region, where V (x) > E,
we write k(x) = iκ(x) def= +i

√
2m[V (x)−E]/h̄, and obtain

ψ(1)
E

(x) = eiu1(x) =
C√
k(x)

e
−

∫ x

x∗
dx κ(x)

+
D√
k(x)

e
+

∫ x

x∗
dx κ(x)

. (1.3b)

1.2. Matching conditions

As described in detail in Ref. [6], and presented in Ref. [9], the two types of solutions can
be matched across as follows:

1 If V (x) crosses E discontinuously:
one must use ψ(x∗+0+) = ψ(x∗+0−) and ψ′(x∗+0+) = ψ′(x∗+0−).
Note: f(x∗+0±) def= limε→0 f(x∗±ε), with ε ≥ 0.

2 If V (x) crosses E discontinuously:
one must use the following identifications:
2.a the barrier (classically forbidden region) to the left:

C = (ϑ∗A+ϑB) , D = 1
2 (ϑA+ϑ∗B) ; A = 1

2ϑC+ϑ∗D , B = 1
2ϑ

∗C+ϑD .

2.b the barrier (classically forbidden region) to the left:

C = 1
2 (ϑ∗A+ϑB) , D = (ϑA+ϑ∗B) ; A = ϑC+ 1

2ϑ
∗D , B = ϑ∗C+ 1

2ϑD .

Here ϑ = eiπ/4 and ϑ∗ = e−iπ/4 are the phases imparted on the amplitudes by the
WKB matching conditions.

1.3. Potential well

Consider a V (x), defined over x ∈ (−∞,+∞), such that V (x) < E for x ∈ (xa, xb), but
V (x) > E outside the [xa, xb] interval. The WKB wave-function is then:

ψ(x) =



C√
κ(x)

e
−

∫ x

xa
dξ κ(ξ)

+ D√
κ(x)

e
+

∫ x

xa
dξ κ(ξ)

, I: for x < xa,

A√
k(x)

e
i
∫ x

xa
dξ k(ξ)

+ B√
k(x)

e
−i

∫ x

xa
dξ k(ξ)

, II: for xa < x < xb,

C′√
κ(x)

e
−

∫ x

xb
dξ κ(ξ)

+ D′√
κ(x)

e
+

∫ x

xb
dξ κ(ξ)

, III: for x > xb,

–2–
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where the constants in the third region are distinguished from those in the first one by
the prime. The reference points for wave-functions in the “external” regions have been
chosen to refer to the nearest classical turning point (as that’s the point around which the
above matching conditions apply). In the middle region, the function can be written with
respect to either reference point—but once it is chosen (xa above), it cannot be changed
arbitrarily. This is because the potential V (x), and so the wave number k(x), and therefore
also the relative phase between the “A” and “B” components changes with x. we shall see
that this change is essential.

We note that
∫ x

xa
dxκ(x) < 0 in region I, since x < xa there. Thus, the “C” partial

wave diverges for x→ −∞, and we must discard this partial wave to obtain a normalizable
function; set C = 0.

To apply the matching conditions, we first note that the transition I→II is as described
above in 2.a. Therefore, with C = 0, we have that

ψ(x) =



D√
κ(x)

e
+

∫ x

xa
dξ κ(ξ)

, I,

ϑ∗D√
k(x)

e
i
∫ x

xa
dξ k(ξ)

+ ϑD√
k(x)

e
−i

∫ x

xa
dξ k(ξ)

, II,

C′√
κ(x)

e
−

∫ x

xb
dξ κ(ξ)

+ D′√
κ(x)

e
+

∫ x

xb
dξ κ(ξ)

, III.

To apply the matching condition for the transition II→III (as described in 2.b), we must
first shift the reference point of the integrals in region II from xa → xb, by writing∫ x

xa

dξ k(ξ) = φ+
∫ x

xb

dξ k(ξ) , where φ
def=

∫ xb

xa

dξ k(ξ) .

Then

ψ(x) =



D√
κ(x)

e
+

∫ x

xa
dξ κ(ξ)

, I,

ϑ∗eiφD√
k(x)

e
i
∫ x

xb
dξ k(ξ)

+ ϑe−iφD√
k(x)

e
−i

∫ x

xb
dξ k(ξ)

, II,

C′√
κ(x)

e
−

∫ x

xb
dξ κ(ξ)

+ D′√
κ(x)

e
+

∫ x

xb
dξ κ(ξ)

, III.

Note that ϑ∗eiφ = e−iπ/4eiφ = ei(φ−π/4) and ϑe−iφ = e−i(φ−π/4). Using this and the
matching conditions 2.b, we obtain:

C ′ = (ϑ∗A+ ϑB)/2 = [ϑ∗(ϑ∗eiφD) + ϑ(ϑe−iφD)]/2

= D[ei(φ−π/2) + e−i(φ−π/2)]/2 = D cos(φ−π/2) = D sin(φ),

D′ = (ϑA+ ϑ∗B) = [ϑ(ϑ∗eiφD) + ϑ∗(ϑe−iφD)]

= D[eiφ + e−iφ] = 2D cos(φ),

–3–
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Finally, since the “D′” partial wave diverges for x → +∞, we must set D′ =
2D cos(φ) = 0, which requires∫ xb

xa

dξ k(ξ) =
∫ xb

xa

dξ
√

2m
h̄2

[
En−V (ξ)

]
= (2n+ 1)π

2 .

This is the equation that determines the values of energy, En, for which there exist bound
states, i.e., the discrete part of the spectrum of the Hamiltonian.

1.4. Potential barrier

Consider now the opposite problem, where V (x), defined over x ∈ (−∞,+∞), such that
V (x) > E poses a barrier for x ∈ (xa, xb), but V (x) < E outside the [xa, xb] interval. The
WKB wave-function is then:

ψ(x) =



A√
k(x)

e
i
∫ x

xa
dξ k(ξ)

+ B√
k(x)

e
+

∫ x

xa
dξ k(ξ)

, I: for x < xa,

C√
κ(x)

e
−

∫ x

xa
dξ κ(ξ)

+ D√
κ(x)

e
+

∫ x

xa
dξ κ(ξ)

, II: for xa < x < xb,

A′√
k(x)

e
−

∫ x

xb
dξ k(ξ)

+ D′√
k(x)

e
+

∫ x

xb
dξ k(ξ)

, III: for x > xb,

where the constants in the third region are again distinguished from those in the first one
by the prime. For future use, we define

σ
def=

∫ xb

xa

dξ κ(ξ) ,

and for the time being leave all the constants in the “outer” regions undetermined. The
goal will be to express (A′, B′) in terms of (A,B) or (A′, B) in terms of (B′, A). That is,
we seek to determine the matrices in the equations:[

A′

B′

]
= P

[
A

B

]
, and

[
A′

B

]
= S

[
A

B′

]
.

These are, indeed, the (propagation) P-matrix, describing the I→III propagation of the
wave-function, and the (scattering) S-matrix, describing the out-going waves, with ampli-
tudes (A′, B), in terms of the in-going ones, with amplitudes (A,B′).

This time, for the transition I→II we must use the matching conditions 2.b, obtaining

ψ(x) =



A√
k(x)

e
i
∫ x

xa
dξ k(ξ)

+ B√
k(x)

e
+

∫ x

xa
dξ k(ξ)

, I,

(ϑ∗A+ϑB)e−σ

2
√

κ(x)
e
−

∫ x

xb
dξ κ(ξ)

+ (ϑA+ϑ∗B)eσ√
κ(x)

e
+

∫ x

xb
dξ κ(ξ)

, II,

A′√
k(x)

e
−

∫ x

xb
dξ k(ξ)

+ D′√
k(x)

e
+

∫ x

xb
dξ k(ξ)

, III,

where we have already shifted the integrals in the exponents in region II, and extracted the
e±σ factor. Note that this now is a real boosting/attenuating factor rather than a phase.

–4–
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Using the matching conditions 2.a for the II→III transition, we finally obtain

ψ(x) =



A√
k(x)

e
i
∫ x

xa
dξ k(ξ)

+ B√
k(x)

e
+

∫ x

xa
dξ k(ξ)

, I,

(ϑ∗A+ϑB)e−σ

2
√

κ(x)
e
−

∫ x

xb
dξ κ(ξ)

+ (ϑA+ϑ∗B)eσ√
κ(x)

e
+

∫ x

xb
dξ κ(ξ)

, II,

1
4 (A+iB)e−σ+(A−iB)eσ

√
k(x)

e
−

∫ x

xb
dξ k(ξ)

− i
1
4 (A+iB)e−σ−(A−iB)eσ

√
k(x)

e
+

∫ x

xb
dξ k(ξ)

, III.

Thus,
A′ = (eσ + 1

4e
−σ)A− i(eσ − 1

4e
−σ)B ,

B′ = i(eσ − 1
4e
−σ)A+ (eσ + 1

4e
−σ)B .

(1.4)

That is (cf. Ref. [8], p.126),

P =

[
(eσ + 1

4e
−σ) −i(eσ − 1

4e
−σ)

i(eσ − 1
4e
−σ) (eσ + 1

4e
−σ)

]
,

satisfying the general requirements (see Ref. [8], p.107 or Ref. [5], p.143):

P12 = −P ∗12 = −P21 = P ∗21 ,

P11 = P ∗22 and det[P] = 1 .

Note that neglecting the e−σ terms or dropping the eσ terms 1) would produce the dis-
astrous result det[P] = 0! Thus, we shall drop neither of the two terms, learning in the
process that both the decaying and the boosting through the barrier are required for a
consistent description of tunneling!

Solving for (A′, B) in terms of (A,B′), we have Thus,

A′ =
1

eσ + 1
4e
−σ
A− i

eσ − 1
4e
−σ

eσ + 1
4e
−σ
B′ ,

B = −i
eσ − 1

4e
−σ

eσ + 1
4e
−σ
A+

1
eσ + 1

4e
−σ
B′ ,

so S =


1

eσ + 1
4e
−σ −ie

σ − 1
4e
−σ

eσ + 1
4e
−σ

−ie
σ − 1

4e
−σ

eσ + 1
4e
−σ

1
eσ + 1

4e
−σ

 .

Indeed, S† = S−1 and det[S] = 1.

Now consider the situation in which a right-moving wave (amplitude A) approaches
the potential from the left (in region I). Part of it will reflect (amplitude B) as a left-mover
in region I, and part of it (amplitude A′) is transmitted as a right-mover into region III.
Note that there is no in-coming (left-mover) wave in region III, whence we set B′ = 0.

1) The substitution eσ± 1
4
e−σ → ± 1

4
e−σ is done in some books, when attempting to describe

an incomming wave from left, with the amplitude A, being reflected into the left-mover in region
I, with amplitude B, and partially tunneling into the right mover in region III, whence the boost
by eσ is dropped to retain only the desirable e−σ-damping.

–5–
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To determine the transmittivity and and reflectivity of the barrier, it is convenient to
obtain and intermediate result: starting with either of the two WKB partial waves,

j =
h̄

2mi
[
ψ∗

d
dx
ψ − ψ

d
dx
ψ∗

]
,

=
h̄|N |2

2mi

[e±iK(x)

√
k(x)

d
dx

e∓iK(x)

√
k(x)

− e∓iK(x)

√
k(x)

d
dx

e±iK(x)

√
k(x)

]
,

=
h̄|N |2

2mi

[e±iK(x)

√
k(x)

(∓ik(x)e∓iK(x)

√
k(x)

− 1
2

k′(x)e∓iK(x)√
k3(x)

)
− e∓iK(x)

√
k(x)

(±ik(x)e±iK(x)

√
k(x)

− 1
2

k′(x)e±iK(x)√
k3(x)

)]
,

=
h̄|N |2

2mi

[(
± i− k′(x)

2k2(x)
)
−

(
∓ i− k′(x)

2k2(x)
)]

= ± h̄|N |
2

m
, (1.5)

where N is the amplitude of the partial wave, K(x) def=
∫ x

x∗
dξ k(ξ), so K ′(x) = k(x) and

the sign of the current indicates right/left motion. Note that the WKB amplitudes, here
N and A,B,C,D in Eqs. (1.3), have the dimensions of (length)−1.

Using Eqs. (1.4) and (1.5), we find (see also Ref. [9], p.67):

T =
∣∣∣∣A′A

∣∣∣∣2 = |S11|2 =
1

(eσ + 1
4e
−σ)2

,

and similarly,

R =
∣∣∣∣BA

∣∣∣∣2 = |S21|2 =
(eσ − 1

4e
−σ

eσ + 1
4e
−σ

)2

.

It is easy to verify that T +R = 1, as required.
It is also of practical value to expand T in powers of e−2σ:

T =
1

(eσ + 1
4e
−σ)2

= e−2σ(1 + 1
4e
−2σ)−2 ,

= e−2σ
[
1 +

∞∑
n=1

(
−2
n

)
e−2nσ

4n

]
= e−2σ

[
1 +

∞∑
n=1

(−1)nn+1
4n

e−2nσ
]
,

= e−2σ
[
1− 1

2e
−2σ + 3

16e
−4σ − 1

16e
−6σ + . . .

]
(1.6)

where
(−2

n

)
is most easily evaluated using that 2):(

N

n

)
=

N !
(N−n)!n!

=
N [N−1]· · ·[N−(n−1)](N−n)!

(N−n)!n!
=
N

1
·N−1

2
· · ·N−n+1

n︸ ︷︷ ︸
n terms

.

2) Note: without the peculiar 1
2

in the matching conditions, there would be no 1
4

in Eq. (1.6),

T would become sech2(σ) and would fail to converge as a power series in e−2σ.

–6–
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Thus, for e−2σ � 1, T ≈ e−2σ is indeed a very good approximation.

2. Variational Method: Simple Power Potentials

Consider a particle moving in one dimension, under the influence of the potential λ|x|γ .
Its Hamiltonian is

Ĥ = − h̄2

2m
d2

dx2
+ λ|x|γ , γ > 0 . (2.1)

For γ ≤ 0, limx→∞ V (x) → 0, in which case we know that the wave-function must decay
exponentially at x → ∞; hence the restriction to γ > 0. Steeper potentials (larger and
larger γ) will induce an increasingly steeper exponential decay. We therefore look for
the lowest energy wave-function of the general form |0〉 = C exp[− 1

2 (β|x|)α]. Since the
normalization constant, C, is a fixed function of α, β, we must choose the parameters α, β
so as to minimize E = 〈0|Ĥ|0〉.

2.1. Normalization

Requiring that 〈0|1l|0〉 = 1, we obtain, using the Gamma functions integral (see appendix),

|C|−2 =
∫ +∞

−∞
dx e−(β|x|)α

= 2
∫ +∞

0

dx e−(βx)α

=
2Γ( 1

α )
αβ

, (2.2)

and so

C =

√
αβ

2Γ( 1
α )

. (2.3)

We will also need

d2

dx2
e−

1
2 (βx)α

=
[(
− α

2 β
αxα−1

)2 − α(α−1)
2 βαxα−2

]
e−

1
2 (βx)α

=
[

α2

4 β
2αx2α−2 − α(α−1)

2 βαxα−2
]
e−

1
2 (βx)α

.

(2.4)

2.2. Energy

Now is is easy to evaluate

E = C2

∫ +∞

−∞
dx e−

1
2 (β|x|)α

[
− h̄2

2m
d2

dx2
+ λ|x|γ

]
e−

1
2 (β|x|)α

, (2.5a)

=
αβ

Γ( 1
α )

∫ +∞

0

dx e−
1
2 (βx)α

[
− h̄2

2m
d2

dx2
+ λxγ

]
e−

1
2 (βx)α

, (2.5b)

=
αβ

Γ( 1
α )

∫ +∞

0

dx e−(βx)α
[
− h̄2

2m

(
α2

4 β
2αx2α−2 − α(α−1)

2 βαxα−2
)

+ λxγ
]
, (2.5c)

–7–
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=
αβ

Γ( 1
α )

[
− h̄2

2m

(
α2

4 β
2α Γ( 2α−1

α )
αβ2α−1

− α(α−1)
2 βα Γ(α−1

α )
αβα−1

)
+ λ

Γ(γ+1
α )

αβγ+1

]
, (2.5d)

=
αβ

Γ( 1
α )

[ h̄2

2m

(
(α−1)β

2 Γ(1− 1
α )− αβ

4 Γ(2− 1
α )

)
+ λ

Γ(γ+1
α )

αβγ+1

]
, (2.5e)

=
h̄2

2m

(
α(α−1)

2

Γ(1− 1
α )

Γ( 1
α )

− α2

4

Γ(2− 1
α )

Γ( 1
α )

)
β2 + λ

Γ(γ+1
α )

Γ( 1
α )

β−γ . (2.5f)

2.3. Exponent

Because of the highly transcendental dependence on α, here we minimize this expression
for energy only with respect to β. We will select α based on the asymptotic behavior of
the wave-functions.

For very large x, the first term in Eq. (2.4) is always bigger, since α is non-negative
(for the wave-function |0〉 = C exp[− 1

2 (β|x|)α] to vanish at x→∞). Thus, the Schrödinger
equation becomes [

− h̄2

2m
d2

dx2
+ λ|x|γ

]
|0〉 = E |0〉 , (2.6a)[

− h̄2

2m

(
α2

4 β
2αx2α−2 − α(α−1)

2 βαxα−2
)

+
(
λ|x|γ − E

)]
|0〉 = 0 , (2.6b)[

− h̄2

2m

(
α2

4 β
2αx2α−2

)
+ λ|x|γ

]
|0〉 ≈ 0 . (2.6c)

For the last line, we neglected E as compared to λ|x|γ , and xα−2 as compared to x2α−2.
For Eq. (2.6c) to hold, we must have 2α − 2 = γ, and so α = 1

2γ + 1. Indeed, γ = 0
corresponds to (asymptotically) constant potentials, for which |0〉 ∼ e−κx, and for the
linear harmonic oscillator, γ = 2 and so |0〉 ∼ e−σx2

; where κ, σ > 0 are suitable constants.

2.4. Damping

We are now ready to minimize (2.5f) with respect to β: we see that E = Aβ2 + Bβ−γ ,

where A = h̄2

2m

(
α(α−1)

2

Γ(1− 1
α )

Γ( 1
α )

− α2

4

Γ(2− 1
α )

Γ( 1
α )

)
and B = λ

Γ( γ+1
α )

Γ( 1
α )

are two constants. Easily:

∂E

∂β
=

(
2A− γBβ−γ

)
β . (2.7)

The two extrema are β = 0 and β = γ

√
γB
2A . The Reader will easily verify that this agrees

with the results for the familiar cases γ = 0, 2.

–8–
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Appendix A. Some Useful Integrals

The following formulae are results of fairly standard integration techniques.

A.1. Symmetric limits

Any integral with finite definite limits can be brought into the form with symmetric limits:∫ b

a

dx f(x) =
∫ +L

−L

dξ f(ξ) ,

where L = 1
2 (b−a) and ξ = x− 1

2 (b+a). Thereafter, we write∫ +L

−L

dξ f(ξ) =
∫ 0

−L

dξ f(ξ) +
∫ +L

0

dξ f(ξ) =
∫ 0

+L

d(−ξ) f(−ξ) +
∫ L

0

d(ξ) f(ξ) ,

= −
∫ +L

0

d(−ξ) f(−ξ) +
∫ L

0

d(ξ) f(ξ) =
∫ +L

0

dξ
[
f(ξ) + f(−ξ)

]
.

Clearly now, if f(−ξ) = −f(ξ), the integral vanishes; on the other hand, if f(−ξ) = +f(ξ),
the two terms add up to 2f(ξ).

A.2. Gamma function evaluations

Any integral of the type
∫ L

0
dx e−αxβ

xκ, with <e(β) > 0, can be evaluated using the
incomplete (complete) Gamma function, the definitions of which are

γ(ν;µ) def=
∫ µ

0

dt e−ttν−1 , and Γ(ν) def=
∫ ∞

0

dt e−ttν−1 .

To this end, one performs the substitution:∫ L

0

dx e−αxβ

xκ =
∫ αLβ

0

dt
( t
α

) 1
β

t−1 e−t
( t
α

)κ
β

, t
def= αxβ ,

= α−
κ+1

β

∫ αLβ

0

dt e−tt
κ+1

β −1 ,

This provides the “Gamma function evaluations”:∫ L

0

dx e−αxβ

xκ = α−
κ+1

β γ
(

κ+1
β ;αLβ

)
, and∫ ∞

0

dx e−αxβ

xκ = α−
κ+1

β Γ
(

κ+1
β

)
.

–9–



Case Studies Variational Method

References

[1] Leslie E. Ballentine: Quantum Mechanics, (World Scientific, Singapore, 2000).

[2] Claude Cohen-Tannoudji, Bernard Diu and Franck Laloë: Quantum Mechanics,
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