HOWARD UNIVERSITY

WASHINGTON, D.C. 20059

Quantum Mechanics II

Quizz \#1 (31rd Jan. '95),
Q. By charge conservation alone, determine the (one-pion, one-nucleon) state into which $\pi^{0} p^{+}$could scatter. Determine the ration of the cross-sections for these processes (given the isospin wave-function factors, and everything else being the same) when $M_{3 / 2} \gg M_{1 / 2}$. Recall, $M_{3 / 2} \stackrel{\text { def }}{=}\left\langle\pi, N, \frac{3}{2}\|\hat{H}\| \pi, N, \frac{3}{2}\right\rangle$ and $M_{1 / 2} \stackrel{\text { def }}{=}\left\langle\pi, N, \frac{1}{2}\|\hat{H}\| \pi, N, \frac{1}{2}\right\rangle$.
A. Quite clearly, either $\pi^{0} p^{+} \rightarrow \pi^{0} p^{+}$, or $\pi^{0} p^{+} \rightarrow \pi^{+} n^{0}$, these two being the only one- π-one- N states with total (electric) charge +1 .

Now,

$$
\begin{align*}
\sigma_{1} \propto & \left|\left[\sqrt{\frac{2}{3}}\left\langle\pi, N ; \frac{3}{2}, \frac{1}{2}\right|+\sqrt{\frac{1}{3}}\left\langle\pi, N ; \frac{1}{2}, \frac{1}{2}\right|\right] \hat{H}\left[\sqrt{\frac{2}{3}}\left|\pi, N ; \frac{3}{2}, \frac{1}{2}\right\rangle+\sqrt{\frac{1}{3}}\left|\pi, N ; \frac{1}{2}, \frac{1}{2}\right\rangle\right]\right|^{2} \\
& \left.=\left|\frac{2}{3}\left\langle\pi, N ; \frac{3}{2}, \frac{1}{2}\right| \hat{H}\right| \pi, N ; \frac{3}{2}, \frac{1}{2}\right\rangle+\left.\frac{1}{3}\left\langle\pi, N ; \frac{1}{2}, \frac{1}{2}\right| \hat{H}\left|\pi, N ; \frac{1}{2}, \frac{1}{2}\right\rangle\right|^{2} \tag{1}\\
& =\left|\frac{2}{3}\left\langle\frac{3}{2}, 0, \frac{1}{2}, 0 \left\lvert\, \frac{3}{2}\right., \frac{1}{2}\right\rangle M_{3 / 2}+\frac{1}{3}\left\langle\frac{1}{2}, 0, \frac{1}{2}, 0 \left\lvert\, \frac{1}{2}\right., \frac{1}{2}\right\rangle M_{1 / 2}\right|^{2}=\frac{1}{9}\left|2 M_{3 / 2}+M_{1 / 2}\right|^{2} .
\end{align*}
$$

The first equality follows from the orthogonality of the (total) isospin eigenfunctions $\left|\pi, N, I, I_{3}\right\rangle$. The second equality follows from applying the Wigner-Eckart theorem, reducing the full matrix elements

$$
\begin{equation*}
\left\langle\pi, N ; I^{\prime}, I_{3}^{\prime}\right| \hat{H}\left|\pi, N ; I, I_{3}\right\rangle=\left\langle I^{\prime}, 0, I_{3}^{\prime}, 0 \mid I, I_{3}\right\rangle\langle\pi, N\|\hat{H}\| \pi, N\rangle, \tag{2}
\end{equation*}
$$

and where $\vec{I}(\hat{H})=0$. Finally, we used that

$$
\begin{equation*}
\left\langle I^{\prime}, 0, I_{3}^{\prime}, 0 \mid I, I_{3}\right\rangle=\delta_{I^{\prime}, I} \delta_{I_{3}^{\prime}, I_{3}}, \tag{3}
\end{equation*}
$$

in agreement with the selection rules-just as with (ordinary) angular momentum.
The same calculation for the second process produces

$$
\begin{align*}
\sigma_{2} \propto & \left|\left[\sqrt{\frac{1}{3}}\left\langle\pi, N ; \frac{3}{2}, \frac{1}{2}\right|-\sqrt{\frac{2}{3}}\left\langle\pi, N ; \frac{1}{2}, \frac{1}{2}\right|\right] \hat{H}\left[\sqrt{\frac{2}{3}}\left|\pi, N ; \frac{3}{2}, \frac{1}{2}\right\rangle+\sqrt{\frac{1}{3}}\left|\pi, N ; \frac{1}{2}, \frac{1}{2}\right\rangle\right]\right|^{2} \tag{4}\\
& =\left|\frac{\sqrt{2}}{3}\left\langle\frac{3}{2}, 0, \frac{1}{2}, 0 \left\lvert\, \frac{3}{2}\right., \frac{1}{2}\right\rangle M_{3 / 2}-\frac{\sqrt{2}}{3}\left\langle\frac{1}{2}, 0, \frac{1}{2}, 0 \left\lvert\, \frac{1}{2}\right., \frac{1}{2}\right\rangle M_{1 / 2}\right|^{2}=\frac{2}{9}\left|M_{3 / 2}-M_{1 / 2}\right|^{2} .
\end{align*}
$$

Thus, in the limit when $M_{3 / 2} \gg M_{1 / 2}$, the ratio (all other factors equal) becomes

$$
\begin{equation*}
\frac{\sigma_{2}}{\sigma_{1}}=\frac{2\left|M_{3 / 2}-M_{1 / 2}\right|^{2}}{\left|2 M_{3 / 2}+M_{1 / 2}\right|^{2}} \xrightarrow{M_{3 / 2} \gg M_{1 / 2}} \frac{1}{2} . \tag{5}
\end{equation*}
$$

That is, the elastic colision $\pi^{0} p^{+} \rightarrow \pi^{0} p^{+}$is expected 66.67%, while $\pi^{0} p^{+} \rightarrow \pi^{+} n^{0}$ only 33.33% of the time if $M_{3 / 2} \gg M_{1 / 2}$. Similarly, if $M_{3 / 2} \ll M_{1 / 2}$, precisely the opposite ratio is obtained: the second process is expected twice as often as the first one.

