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Quantum Mechanics II April ’98.

2nd Midterm Exam Solutions (T. Hübsch)

— DISCLAIMER —
The completeness and detail presented herein were by no means ex-
pected in the Student’s solutions for full credit. The additional infor-
mation given here is solely for the Student’s convenience and education.

1.a. The only information we have in this case is the Schrödinger equation

−
h̄2

2m
ψ ′′(x) + ∆δ(x) ψ (x) = Eψ . (1)

So, we integrate this from −ε to +ε:

−
h̄2

2m

[
ψ ′(x)

]ε

−ε
+ ∆ψ (0) = E

∫ ε

−ε

dx ψ (x) , (2)

where the integral cancels against one of the derivatives in the first term, and is quenched
to evaluation at x=0 in the second owing to the Dirac δ-function. Thus far, we have
assumed nothing about the wave-function ψ (x), except that it has a single value at x=0.
As the potential vanishes everywhere except at x=0, then ψ (x) may be discontinuous at
most at x=0—but there we already assumed it to have a single value. Hence, in fact, we
have assumed that ψ (x) is continuous accross x=0. Then, so must the its integral be, and
taking the limit ε → 0, we obtain:

− h̄2

2m

[
ψ ′(0+) − ψ ′(0−)

]
+ ∆ ψ (0) = E lim

ε→0

∫ ε

−ε

dx ψ (x) = 0 . (3)

Thus, the matching conditions are:

ψ (0+) − ψ (0−) = 0 , ψ ′(0+) − ψ ′(0−) =
2m∆

h̄2 ψ (0) . (4)

In words, the wave-function is continuous, but not necessarily smooth: the discontinuity
at x=0 in its slope is proportional to the value of the wave-function at x=0.

Note that the Schrödinger equation is symmetric with respect to x → −x; the Hamilto-
nian commutes with the reflection operator. Then, there is a complete set of eigenfunctions
of the Hamiltonian which are also eigenvalues of the reflection operator: symmetric or an-
tisummetric. Finally, it should then be clear that the antisymmetric wave-functions are
necessarily smooth.

b. Start from Park’s Eq. (15.11), substitute expressions for κ2, expand to lowest order
in c and highest order in V0:

cos(2πn/N) = cos
(
k1b

)
cosh

(√
2m(V0−E)

h̄
c
)



− 2mE−2m(V0−E)

2 2m
√

E(V0−E)
sin

(
k1b

)
sinh

(√
2m(V0−E)

h̄
c
)

, (5a)

= cos
(
k1b

)(
1 + 1

2

√
2mV0c2

h̄
+ . . .

)

+
V0

2
√

EV0

sin
(
k1b

)(√
2mV0c2

h̄
+ . . .

)
, (5b)

= cos
(
k1b

)(
1 + 1

2

√
2m∆c

h̄
+ . . .

)

+
1

2
√

E
sin

(
k1b

)(
√

2m∆2

h̄
+ . . .

)
. (5c)

Taking the limit c → 0:

cos(2πn/N ) = cos
(√

2mEn

h̄
b
)

+
∆

h̄

√
m

2En
sin

(√
2mEn

h̄
b
)

, (6)

produces the transcendental equation which determines the (quantized) allowed values of
energy En. This is incomparably simpler than using the matching conditions from part a
to produce a wave-function and then sort out the energy-quantization equation above.

b. The case E > V0 is almost identical, since both κ 2
2 and k 2

2 limit to 2mV0/h̄2 when
V0 → ∞, and to lowest nonzero order, sinh(x) ≈ sin(x) and cosh(x) ≈ cos(x). The
condition would therefore be the same as (6). However, if V0 → ∞ ultimately, than it
makes no sense considering E > V0.

c. In the limit ∆ → 0, we obtain (with b → L since c → 0)

cos(2πn/N ) = cos
(√

2mEn

h̄
L

)
, (7)

which is solved by

En =
4π2h̄2

2mN2L2
n2 . (8)

This coincides with the energy spectrum of a particle in a box of size NL with periodic
boundary conditions 1): Since the opacity of the potential barriers vanishes, the particle is
limited only by the periodic boundary conditions on the whole crystal.

d. In the limit ∆ → ∞, (after first dividing Eq. (6) by ∆), we obtain sin
(√

2mEn

h̄
L

)
= 0,

i.e.,

En =
π2h̄2

2mL2
n2 . (9)

This coincides with the energy spectrum of a particle in a box of size L, since the opacity
of the potential barriers, ∆, is infinitely big, and each cell acts as a separate box.

1) A particle in an infinite potential well has no boundary conditions on the derivative at the
walls, so kL = nπ determins the enetgy levels. In contrast, with periodic boundary conditions, the
derivative is also constrained, which rules out the odd-numbered wave-functions. Hence kL = 2nπ
and the factor 4 in the numerator of Eq. (8).
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2.a. The ~B-field is invariant only under (real space) rotations about the z-axis. Indeed:[
L̂z , ~B

]
= 0. Of course, ~B is also invariant under spin-rotations:

[
Ŝi , ~B

]
= 0 for

i = x, y, z, also. However,
[
~̂L2 , ~B

]
6= 0, as can be seen by noting that z2 = r2 cos2 θ =

r2
[√

16π
45 Y 0

2 (θ, φ) +
√

4π
9 Y 0

0

]
, and the first spherical harmonic has angular momentum of

` = 2 and m = 0. Similarly,
[

~̂J2 , ~B
]
6= 0. So, ~B commutes with L̂z, Ŝi, for i = x, y, z and

~̂S2.

Now, ĤB = eh̄
2µ

~B·(~̂L + 2 ~̂S) = eh̄B0

2µ
z2 (L̂z + 2Ŝz) is the external ~B-field perturbation

2), and it also commutes with Ŝz, ~̂S2 and L̂z—and so also with Ĵz, but neither with ~̂L2

nor with ~̂J 2.

b. Since the external magnetic field is strong (spin-orbit and relativistic corrections to
the energy are negligible as in the Pashen-Back effect), and we rely on the non-relativistic
description of the Hydrogen atom, as in section 6.4, and in particular we’ll use the states
given in Table 6.1 (p.190). Recall that

|n, `,m, ms〉(1) = −
∑

n′,...6=n,...

(0)〈n′, `′,m′,m′
s|ĤB |n, `, m,ms〉(0)

E
(0)
n′ − E

(0)
n

|n′, `′,m,ms〉
(0)

.

Results in part a imply that ms=m′
s and m=m′, but that |`−`′|=0, 2. However, if re-

stricting to n=n′=2, the diagonal matrix elements 〈2, `,m,ms|ĤB |2, `,m, ms〉 need not be
considered because of the restriction in the summation!

The states which differ at most in ` are then degenerate and we ought to use degenerate
perturbation theory—in principle. However, having restricted to n=n′=2, ` < 2, and so
|`−`′|=2 is impossible. Therefore, the summation

|2, `,m, ms〉(1) = −
∑

`′ 6=`

(0)〈2, `′, m,ms|ĤB |2, `,m,ms〉(0)

E
(0)
2 − E

(0)
2

|2, `′,m, ms〉
(0)

.

is void, and the vanishing would-be denominator never occurs in our calculation: The
states |2, `, m,ms〉 remain unmixed (pure) to first order in perturbation theory.

c. As noted, ĤB does commute with L̂z, Ŝz, whence matrix elements will be non-zero
among states of same m, ms. Among the eight states

∣∣2, 0, 0,± 1
2

〉
,

∣∣2, 1, 0,± 1
2

〉
, and

∣∣2, 1,±1,± 1
2

〉
, (10)

`′−`| < 2, so in fact, only diagonal matrix elements are non-zero!

The first order shift in the energy is calculated from the matrix

E
(1)
2,`,m,ms

def
= 〈2, `,m, ms|ĤB |2, `, m,ms〉 , (11a)

=
eh̄B0

2µ
〈2, `′, m′,m′

s|r2 cos2 θ(L̂z + 2Ŝz)|2, `,m,ms〉 , (11b)

2) Here µ stands for the reduced mass of the electron in the Hydrogen atom; avoid using m,

not to confuse with m, the eigenvalue of L̂z.
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=
eh̄B0

2µ
(m + 2ms)〈2, `,m|r2 cos2 θ|2, `,m〉 . (11c)

=
eh̄B0

2µ
(m + 2ms)

∫ ∞

0

r2dr
∣∣R`

2

∣∣2 r2

∫
dΩ

∣∣Y m
`

∣∣2 cos θ , (11b)

For various `,m, these matrix elements involve different integrals. For example,

〈2, 0, 0|r2 cos2 θ|2, 0, 0〉

=
1

8πa3
0

∫ ∞

0

r4dr (1 − r

2a0
)2e−r/a0

∫ π

0

dθ sin θ cos2 θ

∫ 2π

0

dφ , (12a)

=
1

6a3
0

∫ ∞

0

dr
(
r4 − r5

a0
+

r6

4a2
0

)
e−r/a0 =

1

6a3
0

a5
0

[
4! − 5! + 1

4
6!

]
, (12a)

So

E
(1)
2,0,0,± = ±7

eh̄a2
0

µ
B0 . (13)

Upon similar calculations,

E
(1)
2,1,0,± = ±7

eh̄a2
0

µ
B0 , E

(1)
2,1,m,± =

9

2

eh̄a2
0

µ
B0(m ± 1) , m = ±1 . (14)

3.a. Easily, V0 = (h̄c−2Ze′
2
)/R ensures continuity of

V (r) =

{
h̄c
R2 r − V0 r < R,

2Ze′
2
/r r > R.

(15)

For a state of energy E > 0, the classical turning points are:

r1 =
R2(E+V0)

h̄c
, r2 =

2Ze′
2

E
. (16)

b. Since ψ is independent of angles, the Laplacian reduces to 1
r2

d
dr

r2 d
dr

= 1
r

d2

dr2 r, and

the Schrödinger equation becomes

1

r

d2

dr2

(
rψ

)
+

2m

h̄2

(
E − V (r)

)
ψ = 0 , (17)

and on writing ψ (r) = u(r)
r , we have

u′′(r) + 2m
h̄2

(
E − V (r)

)
u(r) = 0 . (18)

c. Clearly, we need to deal with the two regions

u′′(r) + 2m
h̄2

[
E + V0 −

h̄c

R2
r
]
u(r) = 0 , for 0 ≤ r ≤ R , (19a)

u′′(r) + 2m
h̄2

[
E −

2Ze′
2

r

]
u(r) = 0 , for R ≤ r ≤ ∞ , (19b)

– 4 –



separately. For the first case, we simplify 2m
h̄2

[
h̄c
R2 r − E + V0

]
= 3

√
4m2c2

h̄2R4 ρ:

u′′(ρ) − ρ = 0 . (20)

This is the Airy differential equation, encountered in the first semester when dealing with a
vertically bouncing quantum ping-pong ball. The solution then quoted refers to J1/3(x

3
2 ),

so a transformation of both the independent variable, ρ, and also the function, u, should
lead to the Bessel equation. Indeed, substituting ρ = zα yields

z2u′′(z) + (1 − α)zu′(z) − α2zαu(z) = 0 . (21)

Letting now u(z) = zβf (z), we obtain

z2f ′′(z) + (1+2β−α)zf ′(z) +
[
β(β − α) − α2z3α

]
f (z) = 0 . (22)

For this to become the Bessel equation, we require 3α=2 and 1+2β−α=1, i.e., α= 2
3 and

β= 1
3
. The differential equation (19a) thus becomes

z2f ′′(z) + zf ′(z) −
[(

3z
2

)2
+

(
1
3

)2
]
f(z) = 0 . (23)

This is the modified Bessel equation, solved by a linear combination of K 1
3
( 3z

2 ) and I 1
3
( 3z

2 ).

Recall now that z = ρ
3
2 , so that

u(r) = A
√

ρI 1
3

(
ρ

3
2

)
+ B

√
ρK 1

3

(
ρ

3
2

)
, (24)

or

ψ (r) = A√
ρI 1

3

(
ρ

3
2

)
+ B√

ρK 1
3

(
ρ

3
2

)
, (25)

Now, note that ρ = 0 occurs at r1 = (E+V0)R2

h̄c — the first turning point. For negative
ρ, imaginary z, i.e., 0 ≤ r ≤ r1 (in the classically allowed region within the linear well),
the modified Bessel Equation reverts to the usual Bessel equation, solved by a linear
combination of J 1

3
(3z

2 ) and N 1
3
(3z

2 ). However, N 1
3
(3z

2 ) and K 1
3
( 3z

2 ) blow up at z = 0, i.e.,

at r=r1 and should not be used. Furthermore, Iν(x) = e−νπi/2Jν(xeiπ/2).

So, for 0≤r≤R (in the classically allowed inside region), the solution may be writ-

ten entirely in terms of I 1
3
(ρ

3
2 ), understanding that in the classically allowed region, for

0≤r≤r1, it in face becomes the oscillatory J 1
3
(ρ

3
2 ):

ψ (ρ) =
A
√

ρ
I 1

3

(
ρ

3
2
)

, 0 ≤ r ≤ R . (26)

No such transformation to the Bessel equation can be found for the second part, in
Eq. (19b), but we can solve it in analogy with the H-atom.

Consider first the E < 0 case. For r → ∞, the 1/r term in (19b) may be neglected,
and we see that u(r) ∼ e−kr where k2 = 2m|E|/h̄2 as usual, discarding the e+kr solutions
as unnormalizable. The full solution is then sought in the form u(r) = e−krf(r), which we
insert into (19b) and obtain the differential equation for f(r):

rf ′′(r) − 2krf ′(r) − af(r) = 0 , a = 4mZe′2

h̄2 . (27)
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After rescaling ξ = 2kr, this yields

ξf ′′(ξ) − ξf ′(ξ) − a
2k

f (ξ) = 0 , (28)

a special case of the confluent hypergeometric equation [Arfken, § 13.6], with c = 0. For

this case, the ‘second’ solution is given as f = ξ 1F1

(
1+a/2k

2 ; ξ
)
, so

ψ 2(ξ) = Be−kr
1F1

(
1+a/2k

2 ; 2kr
)

. (29)

Owing to the relationship between the confluent hypergeometric functions and the Laguerre
polynomials,

1F1

(
1+a/2k

2
; ξ

)
= − 1

a
L1
−(1+a/2k)(ξ) . (30)

Thus, the wave-function ψ 2(ρ) = Beikr
1F1

(
1+a/2k

2 ; 2kr
)

is simply the repulsive potential
analytic continuation of the usual Hydrogen-like wave-function. Furthermore, using the
relationship between Bessel and confluent hypergeometric functions, we can write

ψ 1(ρ) = A′e−ρ3/2

1F1

(
5/6
5/3

; ρ
3
2

)
. (31)

For E > 0, the above analysis holds with only minor changes. The asymptotic solution,
for ρ → ∞, is now a linear combination of eikr (the outgoing wave, for α-decay) and e−ikr

(the incomng wave, for α-capture). Now we write u(r) = e±ikrF±(r). Upon the rescaling
r → η = ∓2ikr, we find that F (η) must satisfy

ηF ′′
±(η) − ηF ′

±(η) ∓ ai
2k

F±(η) = 0 , (32)

This again is solved by F±(η) = 1F1

(
1±ai/2k

2
; η

)

d. We now have to equate ψ 1(ρ) and ψ 2(ρ) and their derivatives at r = R. These
two conditions determine the energy level and the relative ratio A/B, leaving one overall
constant to be determined from normalization. This task is somewhat simplified owing to
the conveinent property

d

dx
1F1

(
a
c ;x

)
=

a

c
1F1

(
a+1
c+1 ; x

)
. (33)

Still the calculations are messy and do not provide any additional insight and we content
ourselves with the sketch below.

Rr1 r2

out-going state (α-decay)

r

−V0

V (r)

E > 0

r0 E < 0

ground state (supressed amplitude)
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e. The equation of continuity states that the rate of change of the probability of finding
the particle within the radius r2 equals the probability current flowing through the spherical
surface of radius r2. Now, if the potential well is sufficiently deep (V0 sufficiently big) so
that E0 < 0, the ground state cannot decay. However, if this is not true, and E0 > 0, the

ground state indeed can decay. Nevertheless, for any particular state, d
dt

∫
r<r2

∣∣ ψ n(r)
∣∣2 = 0,

if ψ n(r) is the stationary state. To obtain a nonzero probability current flux through the
‘Gaussian’ surface of radius r1, we should calculate not with the whole wave function,
but with its ‘in-coming’ or ‘out-going’ traveling wave. The former would correspond to
α-decay, and the latter to α-capture.

f. The integral σ
def
= 1

h̄

∫ r2

r1
dr

√
2m(E − V (r)) is straightforward. The two parts of

σ =

√
2E

h̄

∫ R

r1

dr
√

E − h̄c
R2 r + V0 +

√
2E

h̄

∫ r2

R

dr

√

E − 2Z
e′2

r
(34)

are evaluated using the general formulae
∫

dx
√

a − bx = − 2
3b

√
(a − bx)3 ,

∫
dx

√
a − b

x
= x

√
a − b

x
− b

2
√

a
ln

(
2ax − b + 2

√
ax

√
a − b

x

)
.

The limits r1, r2 and V0 have been determined above and the substitutions are left to the
student. Although no particular simplification ensues, the point was to show that the
result is calculable exactly.
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