DEPARTMENT OF PHYSICS AND ASTRONOMY
(202)-806-6245 (Main Office)
(202)-806-5830 (FAX)

Quantum Mechanics II
2nd Midterm Exam

2355 Sixth Str., NW, TKH Rm. 215
thubsch@howard.edu (202)-806-6257

30th March '98.

Instructor: T. Hübsch
(Student name and ID)
This is an "open Textbook (Park), open lecture notes" two-part exam: problems \#1-2 are due at the end of the Monday class, \#3 and any additions/corrections to \#1-2 are due Friday, 5:00 p.m. For full credit, show all your work. If you cannot complete one part of a calculation, a clear description of the procedure/method will still earn you partial credit. No collaboration is allowed; by handing in the exam you implicitly agree to abide by this.

1. Consider a modification of the Kronig-Penney model (p.454), where $c \rightarrow 0, V_{0} \rightarrow \infty$ but $\Delta=c V_{0}$ remains constant; this is called the Dirac comb.
a. Determine the matching conditions across $V=\Delta \delta(x)$.
b. Find the appropriate analogue of Eq. (15.11).
c. Find the appropriate analogue of Eq. (15.12); explain the result.
d. Describe the effect of $\Delta \rightarrow 0$ on the energy bands.
e. Describe the effect of $\Delta \rightarrow \infty$ on the energy bands.
(Hint: For part a., integrate the Schrödinger equation accross a barrier. Then, either carefully evaluate the Dirac comb limit of Eqs. (15.11) and (15.12), or use your result in part a.)
2. Consider the effects of a strong \vec{B}-field perturbation on the $\left|2, \ell, m, m_{s}\right\rangle$ states of the H -atom, where $\vec{B}=B_{0} z^{2} \hat{\mathrm{e}}_{z}$, and b_{0} is a suitable constant. Neglect the \vec{B}^{2} term.
a. Carefully determine the operators with which this perturbation commutes. [5pt]
b. Specify which of the $\left|2, \ell, m, m_{s}\right\rangle$ will be mixed by the perturbation. [5pt]
c. Calculate the first order shift to the energy of the $\left|2, \ell, m, m_{s}\right\rangle$ states. [15pt]
3. Modify Bethe's model of α-decay, so that the effective nuclear potential is $V(r)=$ $\hbar c r / R^{2}-V_{0}$, for $r \leq R$, and $V(r)=2 Z e^{\prime 2} / r$, for $r \geq R$, and V_{0} ensures that $V(r)$ is continuous.
a. Determine V_{0}, and the turning points r_{1}, r_{2} for an α-particle of energy $E>0$. [10pt]
b. Assuming spherical symmetry, find the differential equation for $u(r)=r \psi(r)$. [10pt]
c. Transform this differential equation into the Bessel equation, and determine which solutions are physical.
d. Using regularity at $r=0$, write down and sketch the final radial dependence of the ground state ψ_{0}; elliminate all but an overall constant by aplying the boundary matching conditions.
e. Calculate $\frac{\mathrm{d}}{\mathrm{d} t} \int \mathrm{~d}^{3} \vec{r}\left|\psi_{0}\right|^{2}$ within a sphere of radius r_{2} using the equation of continuity, and specify its physical significance of this quantity.
[10pt]
f. Evaluate the Gamow factor $e^{-2 \sigma}, \sigma \stackrel{\text { def }}{=} \frac{1}{\hbar} \int_{r_{1}}^{r_{2}} \mathrm{~d} r \sqrt{2 m(E-V(r))}$ exactly.
