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Quantum Mechanics II 27thFebruary ’98.

1st Midterm Exam Solutions (T.Hübsch)

— DISCLAIMER —
The completeness and detail presented herein were by no means ex-
pected in the Student’s solutions for full credit. The additional infor-
mation given here is solely for the Student’s convenience and education.

1. Let’s abbreviate:

|±〉 def
= ψ ±(r, θ, φ) =

(
ψ ±
↑

ψ ±
↓

)
,





ψ ±
↑ = Fl(r)

√
l+ 1

2±mj

2l+1 Y
mj∓ 1

2

l (θ, φ) ,

ψ ±
↓ = ∓Fl(r)

√
l+ 1

2∓mj

2l+1 Y
mj± 1

2

l (θ, φ) ,

where it is understood that Y µ
l ≡ 0 if l < |µ|. With these an expectation value can be

written as follows

〈Ô〉 = 〈+| Ô |+〉 + 〈−| Ô |−〉 ,

=

∫
d3~r

[(
ψ +
↑

)∗
Ô ψ +

↑ +
(
ψ +
↓

)∗
Ô ψ +

↓ +
(
ψ −
↑

)∗
Ô ψ −

↑ +
(
ψ −
↓

)∗
Ô ψ −

↓

]
,

=

∫
d3~r

[∣∣ ψ +
↑

∣∣2Ô +
∣∣ ψ +

↓
∣∣2Ô +

∣∣ ψ −
↑

∣∣2Ô +
∣∣ ψ −

↓
∣∣2Ô

]
.

(1)

It should now be clear that the φ-dependence of the integrand stemms solely from Ô. Now
we need

z = r cos(θ) , z2 = r2 cos2(θ) .

Neither of these depending on φ, for both parts a. and b., the φ-integration in
∫

d3~r =∫ ∞
0

r2dr
∫ π

0
sin θdθ

∫ 2π

0
dφ merely produces an overall factor of 2π.

a.Now, when l=0, then for |+〉 we have that m=0, so j=l+s= 1
2 and mj=± 1

2 , and

|+〉 =

{ (
ψ +
↑
0

)
,

(
0

ψ +
↓

)}
ψ +
↑ = −ψ +

↓ = F0(r)Y
0
0 (θ, φ) = F0(r)

1√
4π

.

while |−〉≡0 (j=l−s would be negative). Thus, (summing Eq. (1) over all allowed mj)

〈z〉 =

∫
d3~r

[∣∣ ψ +
↑

∣∣2z + 0 + 0 +
∣∣ ψ −

↓
∣∣2z

]
=

〈r〉
4π

2·2π

∫ π

0

sin(θ)dθ cos(θ) = 0 ,

because of the θ-integration.

b.On the other hand, for l=1, j = 3
2

or 1
2
. For the former, mj = 3

2
, 1

2
,−1

2
− 3

2
:
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1

−
√
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1
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.
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For j = 1
2 , mj = 1

2 :

|−〉
F1(r)

=

{


√
1
3Y 0

1√
2
3Y 1

1


 ,




√
2
3Y −1

1√
1
3Y 0

1




}
.

(Have you noticed that the square-root coefficients are in fact Clebsch-Gordan coefficients?)

Now we sum Eq. (1), with z2 = r2 cos2 θ, over all allowed mj :

〈z2〉 = 〈r2〉
∫

dΩ
[∣∣Y 1

1

∣∣2 + 0 + 2
3

∣∣Y 0
1

∣∣2 + 1
3

∣∣Y 1
1

∣∣2 + 1
3

∣∣Y −1
1

∣∣2 + 2
3

∣∣Y 0
1

∣∣2 + 0 +
∣∣Y −1

1

∣∣2

+ 1
3

∣∣Y 0
1

∣∣2 + 2
3

∣∣Y 1
1

∣∣2 + 2
3

∣∣Y −1
1

∣∣2 + 1
3

∣∣Y 0
1

∣∣2
]
cos2 θ , (2a)

= 〈r2〉2
∫

dΩ
[∣∣Y 1

1

∣∣2 +
∣∣Y 0

1

∣∣2 +
∣∣Y −1

1

∣∣2
]
cos2 θ , (2b)

= 〈r2〉2
∫ π

0

dθ

∫ 2π

0

dφ
[

3
8π sin2 θ + 3

4π cos2 θ + 3
8π sin2 θ

]
cos2 θ , (2c)

= 〈r2〉2·2π

∫ 1

−1

du
[

3
4π

]
u2 = 〈r2〉3

[u3

3

]1

−1
= 2〈r2〉 . (2d)

In the last line, we used the u = cos θ change of variables. Note that the contribution in
the square brackets in (2a)–(2c) yields 3

4π
. Since

∫
dΩ = 4π, this factor by itself would

after angular integrations produce 3—the degeneracy of P -state(s). The extra factor of
2 in (2b) stemms from the spin-degeneracy. Indeed, one could have derived Eq. (2b)
using the product basis, Ψ = ψχ , where ψ is spin-independent. Since the operator z2 is
also spin-independent, 〈Ψ|z2|Ψ〉 = 〈ψ |z2|ψ 〉〈χ|χ〉, and the latter factor would produce the
multiplicity 2—owing to a sum over the two possible spin projections, ± 1

2
. The three terms

in the square brackets then simply stand for
∑l

m=−l |Y m
l |2, for l = 1: as the statement of

the problem implied, all possible projections m contribute, we only require l = 1.

There was also an easy argument for 〈z〉 = 0: by definition, 〈z〉 = 〈 ψ |z|ψ 〉 is an
expectation value and so quadratic in the wave-function of the state |ψ 〉. As long as
the state has a definite parity (with respect to reflection: θ → θ+π and φ → φ+π, the
integrand will be odd and the integral (in symmetric limits) will vanish.

2.a. As suggested in the note, we use Cartesian basis for the electron in the 3-dimensional
box:

ψ =
(

2
L

) 3
2 sin

(
nxπ

x

L

)
sin

(
nyπ

y

L

)
sin

(
nzπ

z

L

)
, nx, ny, xz = 1, 2, 3, . . .

b. In determining the lifetime τ = (Aa→b)
−1, where Aa→b is the Einstein coefficient.

For ‘a first excited state’ we are free to choose amongst |2, 1, 1〉, |1, 2, 1〉 and |1, 1, 2〉;

–2–
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either of these could only decay into the ground state |1, 1, 1〉. As in Eq. (11.21), we have

Aa→b = 4e′2ω3

3h̄c3

∣∣〈b|~r|a〉
∣∣2. So, for example

A|1,1,2〉→|1,1,1〉 =
4e′

2
ω3

3h̄c3

∣∣〈1, 1, 1|~r|1, 1, 2〉
∣∣2 =

4e′
2
ω3

3h̄c3
∣∣〈1, 1, 1|z|1, 1, 2〉

∣∣2 ,

=
4e′

2
ω3

3h̄c3

∣∣∣∣
2

L

∫ L

0

dz sin2
(
nzπ

z

L

)
z

∣∣∣∣
2

=
4e′

2
ω3

3h̄c3

∣∣∣ 2

L

L2

4

∣∣∣
2

=
L2e′

2
ω3

3h̄c3

where the second equality in the first line follows since 〈1, 1, 1|x|1, 1, 2〉 ∝ 〈1|x|1〉 = 0 and
similarly for y. The integral is easily done by using sin2 α = 1

2
[1− cos(2α)] and integration

by parts. Thus, τ = 3h̄c3

L2e′2ω3 .

c.From, e.g., Eq. (11.19), we see that only 〈1, 1, 1|ê·~r|2, 1, 1〉 = 〈1, 1, 1|x|2, 1, 1〉 having
been non-zero, the polarization vector ê must have been in the x-direction. This then is
the polarization of the photon’s vector potential, in Eq. (11.12) and is referred to as the
photon’s polarization.

3. The composite wave-function for the three electrons must be antisymmetrized with
respect to teh exchange of any two.

a.The lowest possible (ground) state will be obtained by choosing the lowest possible
n, l,m’s. As there are only two spin states available (m2=± 1

2
), at least one of the electrons

will have to have have a higher choice of n, l,m than the other two. Thus, two electrons
(with opposite spins) will be in the 1S-state, while the third will have to be in the 2S-
state, its spin arbitrary. Having fixed that l = 0 = m for all electrons, we’ll omit these
and write |nms〉 for |n, 0, 0;ms〉; also, we abbreviate ms= ± 1

2 into ±. Finally, we write
|n1ms1;n2ms2;n3ms3〉 for the composite wave-function:

Ψ±
g = 1√

6

[
|1+; 1−; 2±〉 − |1+; 2±; 1−〉 + |2±; 1+; 1−〉

− |2±; 1−; 1+〉 + |1−; 2±; 1+〉 − |1−; 1+; 2±〉
]

.

(3)

b.As should be clear from (3), there is only the spin-projection of the 2S electron which
has two possible values — hence a twofold degeneracy of Ψ±

g : the ground state of Lithium
is a doublet.

4. The electrons are free inside the line of length L and so may be considered as particles in

a 1-dimensional box. The stationary wave-functions are |n〉 =
√

2
L sin(nπx

L ). Their energy

is

E =
π2h̄2

2mL2
n2 , n = 1, 2, · · ·

whereupon n = L
πh̄

√
2mE.

–3–
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a.Within n and n+dn, there are dN = 2dn states; the factor 2 stems from two spin
projections. Since

dE =
π2h̄2

2mL2
2ndn ,

we obtain the energy distribution:

ρ(E)
def
=

dN

dE
=

L

πh̄

√
2m

E
.

b.The density of electrons is total number of electrons divided by the length:

ν
def
=

N

L
=

1

L

∫ EF

0

dN =
1

L

∫ EF

0

dE
L

πh̄

√
2m

E
=

√
8mEF

πh̄
.

Thus, EF = π2h̄2

8m
ν2.

c.The average energy is (N = νL = L
πh̄

√
8mEF )

E
def
=

∫ EF

0
dN E

N
=

πh̄

L
√

8mEF

∫ EF

0

dE
L

πh̄

√
2m

E
E = 1

3EF .

d.Pressure is, as always, defined in terms of infinitesimal work done to produce an
isobaric expansion: dW = pdV . Since we are dealing with a line, dV = SdL, where S is
the thickness of the line of length L. Since the work done increases the total energy, so
dW = −dU . Now, we have that:

U = E N =
1

3
EF N =

1

3

π2h̄2

8m
ν2 N =

π2h̄2

24m

N3

L
.

Then

p =
dW

dV
= − 1

S

dU

dL
=

1

S

EFN

3
=

L

3S
νEF .

Note that the pressure blows up in the ideal limit, when the cross-section area, S, is much
smaller than the length, L. That is as expected, since dW = FdL is the work done by the
force F acting to change the length of the system. Then p = F/S, and limS→0 p → ∞.
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