DEPARTMENT OF PHYSICS AND ASTRONOMY
(202)-806-6245 (Main Office)
(202)-806-5830 (FAX)

Quantum Mechanics II

The Final Exam

2355 Sixth Str., NW, TKH Rm. 215
thubsch@howard.edu

17th April '98.

Instructor: T.Hübsch
(Student name and ID)
This is an "open Textbook (Park), open lecture notes/handouts" take-home exam, due by 5 p.m. of Monday, 27th April '98. For full credit, show all your work. If you cannot complete one part of a calculation, a clear description of the procedure/method will still earn you partial credit. No collaboration or consultation is allowed, and you may quote only the textbook, lecture notes and class-handouts; all other results must be derived explicitly.

1. For $\hat{H}=\frac{1}{2 m} \vec{p}^{2}-\frac{1}{2} m \omega^{2} r^{2}$, the Hamiltonian for the 3 -dimensional harmonic oscillator:
a. Prove by explicit calculation of the relevant commutators that all 9 components of the matrix operator $\hat{T}_{i j} \stackrel{\text { def }}{=} \hat{a}_{i}^{\dagger} \hat{a}_{j}$ commute with \hat{H}.
b. Prove that $\left(\hat{T}_{i j}+\hat{T}_{j i}\right)$ and $i\left(\hat{T}_{i j}-\hat{T}_{j i}\right)$ are hermitian.
c. Prove the statement of part a. by careful examination of the action of $\hat{T}_{i j}$ on the eigenstates of \hat{H}. Express \hat{H} in terms of $\hat{T}_{i j}$.
[10pt]
d. Prove that the symmetries generated by $\hat{T}_{i j}$ account completely for the degeneracy of the 3-dimensional harmonic oscillator.
e. In $\hat{L}_{k} \stackrel{\text { def }}{=} \alpha \sum_{i j} \epsilon_{i j k} \hat{T}_{i j}$, determine α so that the \hat{L}_{k} satisfy the $S O(3) \approx S U(2)$ (angular momentum, i.e., spin) algebra: $\left[\hat{L}_{j}, \hat{L}_{k}\right]=i \epsilon_{j k l} \hat{L}_{l}$, for all $j, k, l=1,2,3$.
f. Define $\hat{K}_{k} \stackrel{\text { def }}{=} \alpha \sum_{i j}\left|\epsilon_{i j k}\right| \hat{T}_{i j}, \hat{h}_{1}=\left[\hat{T}_{11}-\hat{T}_{22}\right]$ and $\hat{h}_{2}=\left[\hat{T}_{11}+\hat{T}_{22}-2 \hat{T}_{33}\right]$. Calculate the commutators $\left[\hat{L}_{j}, \hat{K}_{k}\right],\left[\hat{h}_{i}, \hat{L}_{k}\right],\left[\hat{h}_{i}, \hat{K}_{k}\right]$, and prove that $\left\{\hat{L}_{k}, \hat{K}_{k}, \hat{h}_{1}, \hat{h}_{2}\right\}$ generate a group. [30pt]
2. Compare the μ-onic Hydrogen atom (simply replace $e^{-} \rightarrow \mu^{-}$) with the standard one.
a. Write down the energy spectrum in the non-relativistic, spinless approximation.
b. Determine the 1st order relativistic and the spin-orbit correction to energy, to lowest order in perturbation theory.
c. Calculate the 2nd order relativistic correction to energy in lowest order perturbation theory. [10pt]
d. Estimate the 1st order relativistic and the spin-orbit correction to energy, to next-to-lowest order in perturbation theory.
[10pt]
(Hint: Examine carefully the calculations for the Hydrogen atom, then identify and make the necessary changes. A μ^{-}is identical to e^{-}, except that its mass is ≈ 206 times bigger.)
3. Consider a 3 -dimensional crystal where the electrons move in the periodic potential $V(\vec{r})=\Omega \sum_{i=1}^{3} \delta\left(x_{i}-n_{i} L\right)$, for $n_{i}=0, \pm 1, \pm 2, \ldots$.
a. Determine the complete translation and rotational symmetry.
$[5+5 p t]$
c. Write down the Bloch wave function, analogous to Park's Eqs. (15.3-6).
[5pt]
d. Separate variables in Cartesian coordinates and determine the energy bands for each of the three 1-dimensional components.
e. Determine the energy bands for the 3-dimensional crystal.
