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ABSTRACT

One of the relatively simple physical processes that can be de-
scribed successfully in the framework of introductory quantum
theory is alpha decay. In this process, two protons and two neu-
trons out of a relatively large nucleus dissociate from the rest of
the nucleus, form a separate subsystem and subsequently depart.
In its full complexity, this process is not be describable, however
a reasonable simplified version of it is readily tractable and will
be studied in this note. Several alternative models will also be
described, for the interested reader to pursue in greater detail.



1 The Physical Description of the Problem

The process of α-decay starts with a nucleus, say 234
92U (Uranium). This nucleus has 92 protons

and 142 neutrons, and is obviously too complicated for a many-body type of analysis. That is, one
would need to set up 3×234 = 702 equations of motion for the three components of the radius
vector of each of the 234 particles, and these would involve (234

2 ) = 27, 261 2-particle potential
terms to describe the pair-wise interactions.

At some point, among these 234 particles, somehow two protons and two neutrons end up
forming a little subsystem within which the pair-wise binding forces are stronger than the binding
forces to any of the other 230 nucleons. Gradually1 , the little subsystem becomes an entity which
may be thought of as a separate particle trapped within the confines of the ‘rest’ of the nucleus.
Eventually, the little subsystem will tunnel outside the reach of the strong nuclear forces, at which
point the repulsive Coulomb force expels it as the α-particle which is detected well outside the
nucleus. The remaining 230-nucleon nucleus is identified as 230

90Th (Thorium).

The 234
92U nucleus is called the parent nucleus, 230

90Th the daughter nucleus, and the general
formula for the α-decay would be

A+4
Z+2X → 4

2He++ + A
Z Y−−, or A+4

Z+2X α−−→ A
Z Y. (1)

In the first formula, we have used that the α-particle is in fact the nucleus of Helium atom, which
would have two electrons in its stable state. The double positive charge then indicates that only
the nucleus appears on the right, and so leaves the daughter atom twice negatively charged. In
nuclear physics, the same symbols would be used to denote merely the nuclei (with no concern
about the electrons), and so no charges are indicated in the second form of the formula, and the
decay process (arrow) is labeled by ‘α’.

Exceptional cases occur when the number of protons, Z, and/or the number of neutrons,
(A−Z), equal 2, 8, 20, 28, 50, 82 or 126 (the so-called magic numbers). If, say Z = 82 (as in
208

82Pb (lead), which in fact is doubly magical, since also (A−Z) = 126), the nuclear shell model
predicts that the 82 protons (and here also the 126 neutrons) form a strongly bound closed ‘shell’.
Thus, the nearby Polonium nucleus 212

84Po is rather accurately described as a system of a doubly
closed shell of 82 protons and 126 neutrons, plus two extra protons and two extra neutrons. In
this exceptional case, the four extra nucleons are easily identifiable and it does make sense to
think of the 212

84Po nucleus as an α-particle bound to a 208
82Pb ‘shell’. Then, the α-decay is simply a

dissociation of this bond and the subsequent escape of the α-particle. It should also be clear that
this situation is extremely rare: most of α-radioactive nuclei will not be this simple.

Since the physical process of the α-decay is rather involved, we are forced to make an approx-
imation. This will consist of two separate assumptions. The above discussion notwithstanding:

1. the α-particle will be considered as if a well-defined separate entity and simply trapped
within the confines of the nucleus.

1 The description of the process here is purely conceptual and qualitative. The α-decay process is ultimately gov-
erned by the so-called ‘nuclear strong interaction’, the characteristic time for which is 10−23s; therefore, “gradually”
here still happens incredibly swiftly when compared to typical macroscopic processes, such as a cell division or the
burst of an automobile tire.
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2. The dynamics of this α-particle will then be determined by the Schrödinger equation, where
the potential V(~r) is determined by the daughter nucleus.

2 The Model

The potential V(~r), considered to be produced collectively by the nucleons of the daughter nucleus,
will determine the dynamics of α-decay, and we now turn to a discussion of V(~r).

Generally speaking, there must exist at least three regions where V(~r) appears qualitatively
different.

1. Within a radius 0 ≤ r ≤ R, V(~r) must produce an attractive force for the α-particle to be
quasi-bound2 within the nucleus. This binding is produced by strong nuclear interaction,
the range of which is of the order of 1fm = 10−15m (also called 1 Fermi), where this
interaction is orders of magnitude stronger than the electrostatic interaction. Thus, V(~r) <
0 for 0 ≤ r ≤ R where R is expected to be several Fermi’s.

2. Well away from the nucleus, r � 1fm, the effect of strong nuclear interaction is many
orders of magnitude weaker than the electrostatic interaction, and we must approximate
V(~r) = 2Ze′2/r for r � 1fm.

3. There is an intermediate region, for R ≤ r but R 6� r, where the two types of interaction are
comparable and the shape of V(~r) is determined by this balance. Since V(~r) decays as 1/r
for very large r, it must be that V(~r) has the shape of a potential barrier in this intermediate
region, to prohibit the α-particles to simply fall out of the nucleus.

It is mainly this barrier which determines the transition amplitude and so the probability
of α-decay, or α-capture3 —since the same analysis will apply equally well to the time-reversed
process. Moreover, given a potential V(~r), it will be possible to find stationary states of a given
energy E. Clearly, when min[V(~r)] ≤ E < 0, the α-particle will be strictly bound: the appearance
of a classical such α-particle outside the nucleus is impossible, and the wave-function must decay
exponentially with r, for r > R. (To see this, write down the corresponding WKB wave-function.)

On the other hand, for stationary states with 0 < E ≤ max[V(~r)], there have to be at least
two points where E = V(~r); write r = a for the smallest such value and r = b for the largest such
value. Then E > V(~r) for r < a and r > b and these are the two important classically allowed
regions: the α-particle inside (r < a), and outside (r > b) the nucleus. Also, E < V(~r) at least
for a part of the interval a < r < b, and this will describe the barrier through which the α-particle
must pass (by tunneling where E < V(~r)) to escape in an α-decay, or be captured in the reverse
process.

2 Since we are discussing the α-decay, the α-particle is not completely bound, i.e., is not perfectly localized within
the nucleus, i.e., outside the nucleus the probability of finding the α-particle will not decay exponentially with r. In
distinction to true bound states (such as those in a harmonic oscillator), these are often called quasi-bound states.

3 α-capture was first achieved by Rutherford, in 1919.
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Figure 1: A sketch of the expected radial dependence of V(~r). In the grayed region, the collective
potential is due to strong nuclear interaction (the shades of gray indicating the dominance) and its
exact shape is not known. Outside this range and where the α-particle is by now well defined as a
separate entity, the potential stems from the electrostatic repulsion and is well known.

2.1 Gamow’s simple model

In 1928, G.A. Gamow provided a (heuristically speaking) first approximation to the α-decay,
which was the first application of quantum mechanics to a nuclear physics problem. It very
good qualitative agreement with experimental data provided a good measure of confidence that
quantum mechanics was really a theory of Nature and not only of Atomic physics4 . As a first
attempt, Gamow made two assumptions about the potential.

1. Within the nucleus (of radius R), the potential is assumed to be simply a spherically sym-
metric constant potential well: V(~r) = −V0 for 0 ≤ r < R.

2. The effect of the nuclear interaction is assumed to vanish outside the radius of the nucleus,
for r > R. Thus, the potential immediately outside and out to infinity is simply the spheri-
cally symmetric electrostatic Coulomb potential: V(~r) = 2Ze′2/r for R < r < ∞.

That is, there is no intermediate transition region, where the strong nuclear interaction po-
tential would continuously change into the Coulomb potential. Moreover, the potential changes
discontinuously at r = R, so the force that the α-particle experiences at r = R is (the slope of the
transition from5 limr→R− V = −V0 to limr→R+ V = +2Ze′2/R which is) infinite. This of course
is unphysical. Nevertheless, we’ll follow Gamow and pursue the analysis of this model.

Owing to spherical symmetry of the potential, the 3-dimensional Schrödinger equation[
− h̄

2mα

~∇2 + V(~r)
]

ψ(r, θ, φ) = Eψ(r, θ, φ), (2)

4 It was not uncommon for quantum mechanics to be called “atomic theory”, even by its founding fathers: Bohr,
Born, Dirac, Einstein, Heisenberg, Planck, Schrödinger. . . While quantum mechanics was developed to explain
atomic physics, it was not clear in the beginning whether this theory should apply to larger systems such as molecules
and bigger—hence the importance of the work on molecular physics, see chapter 18 [1], esp. §18.4. Similarly, very
little was known of subatomic physics (the neutron was discovered only in 1932 by Chadwick, and artificial radioac-
tivity was discovered only in 1934 by Jolio and Curie), so that Gamow’s application of quantum mechanics to this
uncharted territory was rather ground-breaking.

5 “r → R±” stands for r = (R±ε)→ R.
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Figure 2: A plot of the simplest approximation of V(~r): spherically symmetric, and defining three
regions: two classically allowed ones, the inside and the outside one, and the intermediate classically
forbidden region which acts as a barrier.

separates, upon writing6 ψ(r, θ, φ) = u(r)
r Pm

` (cos θ)eimφ, into

d2u
dr2 +

[
2mα

h̄2

[
E−V(r)

]
− `(`+ 1)

r2

]
u = 0, (3)

and the standard associate Legendre equation for Pm
` (cos θ) and the ‘trigonometric’ one for eimφ.

The latter two being solved in the usual manner, we concentrate on the radial equation (3). Since
ψ(r, θ, φ) < ∞, we must ensure that [u(r)/r] remains finite including the point r = 0, which
imposes the restriction that u(r) ∼ rβ, β ≥ 1 for r → 0, so that limr→0[u(r)/r] < ∞, which may
be regarded as a boundary condition on u(r).

2.2 Spinless decay

Clearly, the case ` = 0, which corresponds to no angular momentum carried by the α-particle7 is
much simpler and we first turn to that.

The region I admits an exact solution (the potential is piece-wise constant),

uI(r) = A sin(Kr + δ), K =

√
2mα

h̄2 (E + V0), (4)

whereas in the regions II and III we use the WKB solutions:

uI I(r) =
C√
κ(r)

e−
∫ r

R dr κ(r) +
D√
κ(r)

e
∫ r

R dr κ(r), R < r < b, (5a)

6 Please, do not confuse this u(r) with the dependent variable substitution ψ → eiu we’ve made in deriving the
formulae for the WKB approximation!

7 As a bound state of four nucleons, we assume that the α-particle is in its own ground state, with no orbital
angular momentum around the center of mass of the 4-nucleon system, and that the spins are added up to a total
of zero. The total angular momentum of this 4-nucleon system—perceived as the α-particle’s spin—is thus zero.
In addition, by setting ` = 0 in Eq. (3), we assume also zero orbital angular momentum about the center of the
daughter nucleus.
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uI I I(r) =
A′√
k(r)

ei
∫ r

b dr k(r) +
B′√
k(r)

e−i
∫ r

b dr k(r), b < r, (5b)

where

κ(r) =

√
2mα

h̄2

(2Ze′2

r
− E

)
, k(r) =

√
2mα

h̄2

(
E− 2Ze′2

r

)
. (5a′, 5b′)

Now, the limr→0[u(r)/r] < ∞ boundary condition forces δ = 0 (so that uI(0) = 0. Furthermore,
the A′ term in (5b) represents an outgoing wave, while the B′ term represents an incoming wave.
Thus, for describing α-decay, we need to set B′ = 0, while for α-capture we need B′ = 0; here we
set the former.

Next, we need to match uI(r) and uI I(r) across r = R, and uI I(r) and uI I I(r) across r = b.
For the first patching, note that the potential changes discontinuously around r = R, whence we
must impose the standard boundary conditions:

lim
r→R−

uI(r) = lim
r→R+

uI I(r), lim
r→R−

u′I(r) = lim
r→R+

u′I I(r). (6)

This gives (κR = κ(R))

A sin(KR) =
C + D
√

κR

, AK cos(KR) = (−C + D)
√

κR , (7)

or
C =

A
2
√

κR

[
κR sin(KR)− K cos(KR)

]
,

D =
A

2
√

κR

[
κR sin(KR) + K cos(KR)

]
.

(8)

In contrast, the potential changes continuously around r = b, whence here we must impose
the WKB boundary conditions, Eq. (4.52b) [1]:

C = ϑ∗eσ A′, D = 1
2 ϑe−σ A′, ϑ = eiπ/4, (9)

where

σ =
∫ b

R
dr κR =

√
2mα

h̄2

∫ b

R
dr

√
2Ze′2

r
− E. (10)

Together with Eq. (8), these imply

ϑ∗eσ A′ =
A

2
√

κR

[
κR sin(KR)− K cos(KR)

]
(11)

and
ϑe−σ A′ =

A
√

κR

[
κR sin(KR) + K cos(KR)

]
(12)

Dividing the last one by the former one, we obtain that

ϑ2e−2σ = 2
κR sin(KR) + K cos(KR)
κR sin(KR)− K cos(KR)

(13)
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and realize that something has gone horribly wrong here! Recalling that ϑ2 = i, we see that the
left hand side is purely imaginary (κR and so σ in Eq. (10) is real), while the right hand side is
purely real. Back-tracking, we see that the cause of this inconsistency lies in fixing both δ = 0 and
B′ = 0—i.e., imposing boundary conditions on both “ends” of the domain r ∈ [0, ∞). Recall that
this was done successfully in the past, but for bound states, and it had the drastic consequence of
quantizing the allowed energy into a discrete spectrum. It should be clear that the total energy
of the outgoing α-particle should not be so quantized.

In other words, using u(0) = 0 to set uI(r) = A sin(Kr)—which we must do for ψ(r, θ, φ) to
be finite near the origin—fixes the far left part of the solution. Then, the two matching conditions
at r = R determine the solution in region II (the integration constants C and D) in terms of A
completely; the two matching conditions at r = b then determine the solution in region III (the
integration constants A′ and B′) in terms of A completely. We were therefore not free to choose
B′ = 0 at will. The resulting ψ(r, θ, φ) has at this stage only two parameters:

1. A, the overall normalization constant, which then must be determined from a suitable nor-
malization condition,

2. E, the total energy of the sought-for stationary state of the α-particle.

The (careful) phrasing of this last item in fact clarifies the point: the real solution uI(r) deter-
mines the stationary state ψ(r, θ, φ), and indeed looks like a standing wave, composed of both an
outgoing and an incoming wave. The former produces the A′ part of uI I I(r) representing α-decay,
while the latter one comes from the B′ part, representing α-capture.

It is thus inconsistent to annihilate the α-capture “partial wave” by hand.

The simple-minded potential above does not admit solutions which describe exclusively
(spinless, vanishing angular momentum) α-decay, but requires that there is a B′ term (repre-
senting α-capture) in uI I I(r), representing an incoming α-particle. We thus correct:

A′ = 1
2 ϑe−σC + ϑ∗eσD, B′ = 1

2 ϑ∗e−σC + ϑeσD, (14)

whereupon Eqs. (8) imply

A′ =
ϑe−σ A
4
√

κR

[
κR sin(KR)− K cos(KR)

]
(15a)

+
ϑ∗eσ A
4
√

κR

[
κR sin(KR) + K cos(KR)

]
, (15b)

=
ϑeσ A cos(KR)

4
√

κR

[
κR tan(KR)− K− 2ie2σ

[
κR tan(KR) + K

]]
, (15c)

B′ =
ϑ∗e−σ A
4
√

κR

[
κR sin(KR)− K cos(KR)

]
(15d)

+
ϑeσ A
4
√

κR

[
κR sin(KR) + K cos(KR)

]
, (15e)

=
ϑ∗eσ A cos(KR)

4
√

κR

[
κR tan(KR)− K + 2ie2σ

[
κR tan(KR) + K

]]
. (15f)
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Now it is clear that |A′|2 = |B′|2. The intermediate results reported in Park’s text [1] differ
because of the systematic and consistent practice of neglecting terms that relate to α-capture; this
is routinely done in research, but hardly ever emphasized in the research literature, and nor it
would seem in textbook form. Notice also that the final result for B′, (15f), implies that the only
way for B′ to vanish would be a separate cancellation in the real and imaginary part of (15f),
which in fact produces the requirements

κR tan(KR)− K = 0 and κR tan(KR) + K = 0, (16)

which are clearly over-constraining the system, by setting K = 0, i.e., E = −V0.

The above then determine completely the stationary states of energy E. Unlike for true bound
states, there is no condition on the energy, and E is not quantized. Compare this with the case
−V0 < E < 0, where the solution uI I(r) would have been valid for all r > R, whereupon we’d
need to set D = 0 for uI I(r) not to diverge as r → ∞. Through Eq. (8), this would impose the
condition

D =
A

2
√

κR

[
κR sin(KR) + K cos(KR)

]
= 0, (17)

or
tan(KR) = −K/κR , (18)

which is the transcendental equation determining the discrete values of E for which there exist
(true) bound states, representing the α-particle forever trapped by the potential of the daughter
nucleus—thus implying that the system, identifiable as the parent nucleus, in fact does not decay.

However, consider the shape of the wave-function uI I(r) according to Eq. (5a), rewritten
here as

uI I(r) =
C e−σ√

κ(r)
e−
∫ r

b dr κ(r) +
D eσ√

κ(r)
e
∫ r

b dr κ(r). (19)

The C-term decreases exponentially outward, while the D-term grows. Certainly, the former
seems to better conform to a situation in which the α-particle is expected to hover about inside
the nucleus for a while and then tunnel through the barrier outward. Thus, one should regard
Eq. (18) approximately true also for α-decay, at least so that |D| eσ � |C| e−σ, i.e., |D| � |C| e−2σ.
In this approximation,

A′ ≈ ϑeσ AK cos(KR)
2
√

κR

. (20)

2.3 Numerical evaluations and predictions

The probability of α-decay per second (decay rate) must be proportional to the probability of
finding the state outside the nucleus, i.e., λ ∝ |A′|2. Integration over angles will give a 4π, and

λ =
4πh̄|A′|

mα
≈ 4πh̄K2|A′|e−2σ cos2(KR)

mακR

, (21)

is the only expression depending in addition only on initially given quantities that has the correct
dimensions; the second, approximate equality holds upon imposing (20). The proportionality of
the decay rate to e−2σ is very typical of WKB calculations, and we now turn to calculating it.
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The exponential σ was defined in (10) as

σ =

√
2mα

h̄2

∫ b

R
dr

√
2Ze′2

r
− E,

=

√
2mαE

h̄2

∫ b

R
dr

√
b
r
− 1,

=

√
2mαE

h̄2 b
[

arccos

√
R
b
−
√

R
b

√
1− R

b

]
,

(22)

the integral being evaluated through the substitution r = b cos2 ρ. Now, since b = 2Z(e′)2

E is
typically several times R, we can use small-argument (first terms in the Taylor) expansions:
arccos(x) ≈ π

2 − x and
√

x(1− x) ≈
√

x, so that

h̄ σ ≈ π
2

√
2mαE b−

√
8mαE b R + 1

3

√
2mαE R3/b +

1
10
√

2

√
mαE R5

b3 + . . . (23)

= π

√
2mα

E
Z(e′)2 − 4

√
mαZ R e′ +

1
3

√
mα

Z
R3 E

e′
+

1
40

√
mα

Z
R5 E2

(e′)3 + . . . (24)

This produces a very good agreement with experimental data (the first two terms reproduce the
so-called Geiger-Nuttall experimental law; see figure 3), verifying the model and the approxima-
tions that were made in the process of the above derivations.

Figure 3: The Geiger-Nuttal plot, copied from Ref. [1, p.451].

2.4 Exact solution

While the above analysis does agree very well with experiments, it is not conclusive as it (1) limits
to ` = 0, “spinless” α-decay, and (2) was done in an approximation, the WKB analysis, partly
following the historical account and partly because of the intuitiveness of the solution.

Thus, the cases of ` 6= 0 remain to be analyzed; we now turn to this general case and present
the general (and in fact exact) solution to the model that is still based on Gamow’s simplified
potential as in Fig. 2.
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Return to the radial equation (3):

d2u
dr2 +

[
2mα

h̄2

[
E−V(r)

]
− `(`+ 1)

r2

]
u = 0. (3)

For 0 < r < R, we write R(r) = [u(r)/r] and obtain the original

d2R
dr2 +

2
r

dR
dr

+

[
K2 − `(`+ 1)

r2

]
R = 0, (25)

spherical Bessel equation. Since ψ(r, θ, φ) < ∞, the von Neumann solution must be excluded,
and we have Rin(r) = Aj`(Kr).

For r > R, we take hint from the Hydrogen atom, and expect the radial solution in the form
R(r) = r`e−βr f (r). Substituting this, we obtain (upon multiplying throughout by r`−1eαr)

r f ′′ +
[
2(`+1)− 2βr

]
f ′ −

[
(2β(`+1) + 4Ze′2mα/h̄2) + (β2 + 2mαE/h̄2)r

]
f = 0. (26)

By setting β2 = −2mαE/h̄, the ‘no-derivative term’ simplifies, and after rescaling z = 2βr:

z f ′′(z) +
[
2(`+1)− z

]
f ′(z)−

[
(`+1) + 2Ze′2mα/βh̄2)

]
f (z) = 0. (27)

has become the confluent hypergeometric equation. Writing a = (`+1)+2Ze′2mα/βh̄2 and c =

`+1, the general solution is given by [2]:

f (z) = B 1F1
( a

c ; z
)
+ C z1−c

1F1
( a+1−c

2−c ; z
)
. (28)

Writing w = 2Ze′2mα

βh̄2 , the radial function may be specified (after redefining C slightly) as

Rout(r) = r`e−βr
[

B 1F1
( `+1+w

2`+2 ; 2βr
)
+ C r−2`−1

1F1
(w−`
−2` ; 2βr

)]
. (29)

Of course, the confluent hypergeometric functions 1F1
( a

b ; x
)

can be expressed in terms of Bessel
functions, and vice versa; see Ref. [2].

Note that β is bound to be imaginary, since E > 0 and so β2 = −2mαE/h̄ < 0; choose
0 < arg(β) < π. The exponential e−βr then describes an incoming wave. To determine the
incoming/outgoing nature of the terms in the square brackets, we use the asymptotic behavior of
the confluent hypergeometric function [3]:

1F1
( a

c ; z
)
∼ e−iπa Γ(c)

Γ(c− a)
z−a +

Γ(c)
Γ(a)

ezza−c, z→ ∞. (30)

The e2βr factor is outgoing, and upon multiplication through with the e−βr prefactor, we see
that the first term is an incoming wave (α-capture) and the second term is the outgoing wave
(α-decay). That is, the asymptotic form of Rout(r) is

Rout(r) ∼ Fr−(w+1) e−βr + Grw−1 e+βr (31)
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where (upon using the reflection formula for the Γ-function)

F = B
( e−iπ

2β

)w+`+1 Γ(2`+2)
Γ(`+1+w)

+ C
( e−iπ

2β

)w−` Γ(`+1+w) sin[π(`+w)]

Γ(2`+1) sin[2`π]
, (32)

G = B(2β)w−`−1 Γ(2`+2)
Γ(`+1+w)

+ C(2β)w−` Γ(`+1−w) sin[π(`−w)]

Γ(2`+1) sin[2`π]
. (33)

So, for a purely outgoing wave (α-decay), we need8 F ≈ 0, i.e.,

C ≈ B
(2`+1)
(2β)2`+1

Γ2(2`+1) sin[2`π]

Γ2(`+1+w) sin[π(`+w)]
, (34)

where we used that ` is integral so the prefactor −e−iπ(2`+1) = +1.

Note that w = 2Ze′2mα

βh̄2 is non-integral, moreover imaginary, since β is imaginary. The above

condition then simply entails that C = 0 since sin[2`π] = 0 for integral `.

This over-constrains the solution (as discussed before), for there is now one undetermined
constant in Rin(r) and another undetermined constant in Rout(r), but two matching conditions
at r = R (equating both the functions and their derivatives). Finally, an overall constant ought
to remain so that the wave-function could be normalized. That means that of the two matching
conditions, one should be used to relate A from Rin(r) and B from Rout(r), while the other should
be used to restrict the possible values of the energy E—the only parameter left free. Explicitly
carrying this out is rather tedious and will not be done here, but is clearly possible.

This follows on noticing that equating limε→0 Rin(R−ε) with limε→0 Rout(R+ε) may clearly
be used to relate A from Rin(r) and B from Rout(r). Thereafter, these constants drop out of the
second matching condition if that is written as:

lim
r→R−

1
Rin(r)

dRin(r)
dr

= lim
r→R+

1
Rout(r)

dRout(r)
dr

. (35)

(Once the functions have been made to match at the boundary, one can modify the derivative
matching condition

lim
r→R−

R′in(r) = lim
r→R+

R′out(r) (36)

by dividing the l.h.s. by Rin(r) and the r.h.s. by Rout(r) and then take the limits.) Therefore, this
last condition (admittedly cumbersome and obviously transcendental) appears to be a (quantiza-
tion) condition on the only free parameter appearing in it—the energy E.

Had we not required that the solution be of the form of an outgoing wave at r → ∞, there
would have been one more constant in Rout(r) and thus no condition on the energy. Therefore, the
exact stationary states (by definition) describe both an outgoing (α-decay) wave and an incoming
(α-capture) wave for r � R.

8 As discussed above, it is inconsistent to set F = 0 for a stationary wave, which by definition must include both
traveling waves. The relation “≈” will be used to denote the approximate setting to zero, as discussed above, and we
explore the consequences in general.
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Indeed, for a purely outgoing wave, there would be a net probability current outward:

~ =
2e
mα
<e
{

G∗rw−1eβ∗r êr
h̄
i

d
dr

Grw−1eβr
}

=
2eh̄
mα
|G|2 =m(β) êr r2w−2 e2<e(β)r,

(37)

which results in a “probability leak” through a sphere of radius ρ:∮
dω ρ2~(ρ) =

8πeh̄=m(β)

mα
|G|2r2w e2<e(β)r. (38)

Thus, unless <e(β) < 0, this does not vanish in the ρ → ∞ limit, an probability is not
conserved! Since β2 = −2mαE/h̄, and the quantities on the r.h.s. are real, <e(r) = 0, and a
purely outgoing (α-decay) wave would imply probability non-conservation.

We have thus proved that the stationary states must include both an outgoing (α-decay) and
an incoming (α-capture) wave. This does not invalidate the estimates of subsection 2.3 above,
since the probability of finding the α-particle in the escaping wave remains proportional to the
square of the absolute value of the amplitude of the outgoing wave, regardless of the amplitude
of the incoming wave.

3 Better Models

The above presents detailed analysis of the simple spherically symmetric potential as given in
Fig. 2.

As noted in the previous section, the discontinuous jump of the potential at r = R is un-
physical, as the force there becomes infinite. The simplest modification of this potential is then
presented by smoothing the jump from the bottom of the potential well inside the nucleus to the
top of the Coulomb barrier at the outer side of r = R. The resulting potential is then sketched
in Fig. 4 below. Now there is no force on the α-particle while it is within 0 < r < $, then there
is a constant attractive force (equal to the slope of the potential) within ε < r < R. Finally, out-
side r = R, there is again the Coulomb repulsion force. This would seem to be more reasonable
physically. The potential function is now

V(r) =

{
αr− β $ ≤ r ≤ R,
2Ze′2

r R ≤ r < ∞,
(39)

where

α =
2Ze′2 + V0R

R(R− $)
, β =

2Ze′2$ + V0R2

R(R− $)
. (40)

Now a = (E− β)/α, and b = 2Ze′2/E remains.

As to the solutions (stationary states) in this modified model, one can apply WKB for ε < r <
∞, and then match this with uI(r) = A sin(Kr) which is still the exact solution for 0 ≤ r ≤ $. The
decay rate would again involve e2σ, where

σ =

√
2mα

h̄2

∫ b

a
dr
√

V(r)− E, (41)
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V(r)

−V0

$ a R b

E

r

Figure 4: A plot of a next-to-simplest approximation of V(~r). The discontinuous jump from −V0 for
0 < r < R to 2Ze′2/R has been replaced by a linear segment.

=

√
2mα

h̄2

[ ∫ R

a
dr
√

αr− β− E +
∫ b

R
dr

√
2Ze′2

r
− E

]
, (42)

=

√
2mα

h̄2
2

3α

[√
(αR− β− E)3 −

√
(αa− β− E)3

]
⇐ slope correction (43)

+

√
2mαE

h̄2 b
(

arccos

√
R
b
−
√

R
b

√
1− R

b

)
, (44)

The second line in (44) is of course the same as before, whereas the first line is the correction due
to the finite slope in Fig. 3. Note that, unlike the old result, this now does depend on the depth
of the potential well, V0, and of course also on the new parameter, $. This makes an estimation
quite harder, but we note that these correction terms will definitely involve higher positive powers
of E than what already appeared in Eq. (24). Since the old result (24) already showed a good
agreement with the experimental data, it follows that the corrections should be minimal and so
$ . R, and R−$ may be used as a small parameter to expand the square-roots in the first line
of (44). The result is a power-series in non-negative integral powers of (R− $)E, with an over-all√

R−$ pre-factor. The 0th term of this series shifts the E-independent second term in (24), while
the remaining terms are all new, as compared to (24). Note that in the limit $ → R, these new
terms all vanish because of the over-all

√
R−$ pre-factor.

While comparison with experimental data, and very little deviation from the power-laws in
Eq. (24), indicates that $ ≈ R, we may nevertheless attempt to describe the ‘inside’ region of
the potential by means of a (spherical) harmonic oscillator. The resulting potential is sketched in
Fig. 4 This time, the ‘inside’ radial function would be a solution of the 3-dimensional harmonic
oscillator (for ` = 0, this does reduce to the 1-dimensional case). Note that since the solutions
are needed only for finite r, it is not necessary to limit the series or discard the solution which
would diverge at infinity; both solutions of the resulting radial equation can be used (they can be
expressed in terms of hypergeometric functions). Now a =

√
2E/mα/ω.
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V(r)

a R b

E

r

Figure 5: A further elaboration on the shape of V(~r); the inside potential has been assumed to be of
the (spherical) harmonic kind.

The decay rate, estimated again by WKB methods, will again involve e−2σ, where this time

σ =

√
2mα

h̄2

[ ∫ R

a
dr
√

1
2 mαωr2 − E +

∫ b

R
dr

√
2Ze′2

r
− E

]
, (45)

(46)

=

√
2mα

h̄2

[
R
2

√
1
2 mαω2R2 − E− a

2

√
1
2 mαω2a2 − E (47)

+
E

ω
√

2mα
ln
( amαω2 + ω

√
2mα

√
1
2 mαω2a2 − E

Rmαω2 + ω
√

2mα

√
1
2 mαω2R2 − E

)]
(48)

+

√
2mαE

h̄2 b
(

arccos

√
R
b
−
√

R
b

√
1− R

b

)
, (49)

The correction with respect to the Gamow result (24) now appears in the first two lines of (49).
Note especially the logarithmic terms; since λ ∝ e−2σ, the decay rate will be proportional to a
power of the ratio which appears inside the logarithm, quite unlike all other terms so far. Again,
for these corrections to be small, it must be that a . R, whence ω &

√
2E/mα/R, which gives

an estimate on typical frequencies of the α-particle while in the nucleus. This is quite consistent
with the estimates based on the Gamow model (see Ref. [1], Eq. (14.17), p. 449),

ω ≈ h̄K
mαR

=
√

2(E + V0)/mα/R. (50)

Finally, the models in Fig. 3 and 4 both have the potential V(r) continuous at r = R, but
in both cases, the derivative is not continuous, and the force field would have discontinuities.
This can be remedied by introducing a smoothing intermediate region, and use the ‘upside-down’
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harmonic oscillator for R ≤ r ≤ R′:

V(r) =


1
2 mαω2r2 0 ≤ r ≤ R,

W − 1
2 mαν2(r−r0)

2 R ≤ r ≤ R′,
2Ze′2

r R′ ≤ r ≤ ∞,

(51)

where W, ν, r0 and R′ are chosen so that both V(r) and V′(r) are continuous across r = R and
r = R′. A sketch is given in Fig. 6.

V(r)

−V0

a R R′ b

E

r

Figure 6: Our last attempt at refining the shape of V(~r). The inside potential has been assumed to
be of the (spherical) harmonic kind, just as above. However, instead of the quadratic function simply
turning into the 1/r curve, there is now an intermediate region, where the potential is the ‘upside-
down’ quadratic curve. At the points, R, R′, the shapes are joined smoothly, which ensures that the
force is continuous.

Stationary states would be found by using the solutions to the 3-dimensional harmonic oscil-
lator for 0 ≤ r ≤ R, their analytic continuation for R ≤ r ≤ R′ and the above analyzed confluent
hypergeometric functions for r ≥ R. The decay rate is again estimated using WKB methods, and
the integral for σ breaks into two or three parts, depending whether a > R or a < R. The inte-
grals

∫
dr
√

V(r)− E can again be solved exactly, and some useful integrals are collected in the
appendix A.

4 Conclusion

Given the longish and somewhat disheartening introductory note, one might have expected a
rather poor predictive power of such a simple model as has been analyzed in section 2. Fortu-
nately, it turns out that all the integrals for σ, the exponential of which is the dominant factor in
the WKB approximation for the decay rate, could be evaluated exactly. Given also that the WKB
approximation is typically rather accurate for decay problems, this combined into a very good
agreement with experiments.

The simplest model on purpose ignores many of the details discussed in the introduction,
but captures two essential characteristics of the process: 1. the Coulomb repulsion between the
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daughter nucleus and the α-particle, and 2. the fortuitously negligible dependence on the details
of the potential inside the nucleus. Modifications of this model will include more realistic poten-
tials inside the nucleus, and more realistic transition regions between ‘inside’ and ‘well outside’
the nucleus. Some of these have been described in the previous section, and many more can be
constructed in similar vein.

A Some Useful Integrals

When estimating the decay rate using WKB methods through a potential barrier described in part
by some simple functions, the following integrals are useful:∫

dx
√

1 + x2 = 1
2 x
√

1 + x2 + 1
2 sinh−1(x), (52)∫

dx
√

1− x2 = 1
2 x
√

1− x2 + 1
2 sin−1(x), (53)∫

dx
√

x2 − 1 = 1
2 x
√

x2 − 1− 1
2 ln

(
r−

√
x2 − 1

)
, (54)∫

dx

√
1 +

1
x
= x

√
1 +

1
x
+ 1

2 ln
(

1 + 2x + 2x
√

1 + 1
x

)
, (55)∫

dx

√
1− 1

x
= x

√
1− 1

x
− 1

2 ln
(
− 1 + 2x + 2x

√
1− 1

x

)
, (56)

∫
dx

√
1
x
− 1 = x

√
1
x
− 1− 1

2 tan−1
( (2x− 1)

√
1
x − 1

2(x− 1)

)
. (57)
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