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3D Space & Rotations

Angular Momenta

3

In(3D(space,

Then([see(ArAken(&(Webber,(exercises(2.5.13–2.5.17]

Use(algebra.(In(Cartesian(coordinates([A&W(1.8.7],

No(two(of(Lj(commute,(no(simultaneous(eigenvectors
Instead:
Pick(Lz(=(L3,(so
&(Aigure(out(everything(we(can(about(λ(and(m.
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∂
∂q

�
(4)

L
i

= �i#
jk

`
x

k

∂
∂x

` L
x

= �i

�
y

∂
∂z

� z

∂
∂y

�
, etc. (5)

[L
j

, L
k

] = i#
jk

` L ` (L
j

)† = L
j

(6)
~L 2 := L 2

x

+ L 2
y

+ L 2
z

[~L 2, L
j

] = 0 (7)

1

W(~r ) = W(r)
∂W

∂q
= 0 =

∂W

∂f
(1)

~r2
f (~r ) = 1

r

�
∂2

∂r

2 r f

�
� 1

r

2
~L 2

f (2)

~L 2
f

:= � 1
sin q

∂
∂q

⇥
sin q ∂ f

∂q

⇤
� 1

sin2 q

∂2
f

∂f2 (3)

~L = �i(~r ⇥ ~r) = i

�
êq
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∂
∂q

�

L
i

= �i#
jk

`
x

k

∂
∂x

` L
x

= �i

�
y

∂
∂z

� z

∂
∂y

�
, etc.

[L
j

, L
k

] = i#
jk

` L ` (L
j

)† = L
j

~L 2 := L 2
x

+ L 2
y

+ L 2
z

[~L 2, L
j

] = 0
~L 2 |l, mi = l |l, mi L 3 |l, mi = m |l, mi

hl, m|~L 2|l, mi = l , = hL 2
x

i + hL 2
y

i
| {z }

>0

+ hL 2
z

i
⇥

= m

2⇤

L ± := L
x

± iL
y

[L 3, L ±] = ±L ± [L +, L �] = 2L 3 [~L 2, L ±] = 0

1

W(~r ) = W(r)
∂W

∂q
= 0 =

∂W

∂f

~r2
f (~r ) = 1

r

�
∂2

∂r

2 r f

�
� 1

r

2
~L 2

f

~L 2
f

:= � 1
sin q

∂
∂q

⇥
sin q ∂ f

∂q

⇤
� 1

sin2 q

∂2
f

∂f2

~L = �i(~r ⇥ ~r) = i

�
êq
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êq

1
sin q

∂
∂f � êf
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Table A.2: Several smallest representation of the SU(2) group; formal ket-notation precisely
corresponds to spherical harmonics |j, mi $ Ym

j (q, f) when j 2 Z.

dim. formal ket-notation index⇤ matrix
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⇤ The indices are a, b, c · · · 2 {1, 2}; round parentheses denote symmetrization: t(ab) = +t(ba).

have a corresponding functional representation:
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Evidently and except for J 3, computations with the abstract operators and eigenstates of the
SU(2) group is simpler than with the functional representation of these.

— ¶ —

Other than the formal (|j, mi) and the functional (Ym
j (q, f)) notation, the matrix nota-

tion is also widely used. It is well known that halves of the Pauli matrices (A.148)
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satisfy the relations (A.38a), which identifies the eigenvectors of the J
(1/2)
3 -matrix with the
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usually, one identifies a “marking” on the spinning object (the ice-skater’s face or a pattern
on the top), and the angular velocity is determined by following the motion of this marking.
Independently, one determines the moment of inertia for the same object in some way15, and
then computes the angular momentum from the so-obtained values of the moment of inertia
and the angular velocity. That is, there’s no such thing as an “angularmomentumometer.”

With elementary particles, the situation is even more indirect: by definition, elemen-
tary particles cannot have a “marking” the motion of which one could even in principle
follow, so as to measure the angular velocity, compute the moment of inertia, etc. Instead,
the angular momentum is even defined indirectly. For example, the intrinsic angular mo-
ment of an electron—the so-called spin—is in fact a fictive rotation [+ digression 2.1 on
p. 139] which one computes, by way of relation (2.24a), from the measured magnetic dipole
momentum.

In the situation when we have several magnetic fields, it is perfectly logical to compute
their vectorial sum. Conversely, since the dipole momenta of these magnetic fields define
spins and orbital angular momenta16, to the sum of magnetic fields then corresponds a sum
of angular momenta, both intrinsic (“spins”) and relative (“orbital”).

— ¶ —

The technique of adding angular momenta in quantum theory differs from “ordinary
vectorial addition” which is expected in classical physics, and this is discussed in great detail
in standard textbooks of quantum mechanics. We recall here the basic relations.

Let {L1, L2, L3} and {S1, S2, S3} be two triples of operators, of which each indepen-
dently satisfies the relations (A.38a)—regardless of their physical meaning—and let

[L j, Sk] = 0 for every pair of indices j, k = 1, 2, 3. (A.50)

These two triples then generate two separate copies of the SU(2) group, where elements
of one commute with the elements of the other, and we have SU(2)L ⇥ SU(2)S. One then
defines

J j := L j + S j, ) [J j, J k] = i# jk
mJ m, (A.51)

and the triple J i generates the diagonal subgroup SU(2)J ⇢ SU(2)L ⇥ SU(2)S. For each
triple, one defines operators such as J 2 and J±, yielding results akin to (A.38), repeating
the computations in digression A.2 on p. 489:

L2|`, m`i = `(`+1)|`, m`i, L3|`, m`i = m`|`, m`i; (A.52a)

S2|s, msi = s(s+1)|s, msi, S3|s, msi = ms|s, msi; (A.52b)

J 2|j, mji = j(j+1)|j, mji, J 3|j, mji = mj|j, mji. (A.52c)

The relation (A.50) implies that L2, L3, S2, S3 all mutually commute, so that the tensor
product of the eigenbases (A.52a) and (A.52b),

|`, s; m`, msi := |`, m`i ⌦ |s, msi, (A.53a)
15 In principle, this is possible by approximating the geometry of the object and its mass distribution, whereupon

one computes the moment of inertia by integrating, or by physically applying a force, and the moment of inertia
is computed as the ratio of the applied torque and the produced change in its angular velocity.

16 Although Bohr’s model of the atom depicts the electron as a point-particle that rotates about a point-like proton,
so that the rotation of electron’s charge forms a current that produces an “orbiting magnetic field,” experiments
actually only measure this magnetic field, from which then—in turn—one concludes about the rotating of the
mental image of the point-like electron in Bohr’s atom.
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is a simultaneous eigenbasis of all four operators:

L2|`, s; m`, msi = `(`+1)|`, s; m`, msi, S2|`, s; m`, msi = s(s+1)|`, s; m`, msi, (A.53b)
L3|`, s; m`, msi = m`|`, s; m`, msi, S3|`, s; m`, msi = ms|`, s; m`, msi. (A.53c)

The operator J 3 commutes with L2, L3, S2, S3, but is of course not linearly independent since
equation (A.51) implies that J 3 = L3 + S3. We thus also have that

J 3|`, s; m`, msi = (m`+ms)|`, s; m`, msi. (A.53d)

In turn,
[J 2, L3] = 2i#jk3L jSk = 2i(L1S2 � L2S1) = �[J 2, S3], (A.54)

and J 2 does not commute with every operator from the collection {L2, L3, S2, S3}. Thus,
{L2, L3, S2, S3} is a maximal collection of linearly independent mutually commuting opera-
tors.

In turn, the operators {J 2, L2, S2, J 3} also all mutually commute, and since L3 and S3
do not commute with J 2, this second operator quartet is also a maximal collection of linearly
independent mutually commuting operators. Thus they too have a simultaneous eigenbasis:

J 2|j, `, s; mji = j(j+1)|j, `, s; mji, L3|j, `, s; mji = `(`+1)|j, `, s; mji, (A.55a)

J 3|j, `, s; mji = mj|j, `, s; mji, S2|j, `, s; mji = s(s+1)|j, `, s; mji. (A.55b)

In textbooks of quantum mechanics are L identified with the orbital angular momen-
tum, S with the spin and J with the “total” angular momentum, (e.g. of an electron in a
hydrogen atom). Ignoring the fact that J does not include the nuclear spin, and so in reality
is not the total angular momentum, there exist many situations where there are more than
two triples of operators each of which that satisfies the relations such as do L and S, and
where at least some of such operators have no relation with rotations, even if fictitious. For
example, there is no obstruction to add—akin to equations (A.51)— the angular momentum
of a nucleon in one nucleus, say, with the isospin of that or any other nucleon.

Thus, L and S as well as their eigenbasis (A.53a) will be referred to as “constituent,”
and J and the eigenbasis (A.55) will be referred to as “composite.”

Of course, since both bases are complete, it follows that every element of one may be
expressed in terms of the elements of the other:

|`, s; m`, msi =
`+s

Â
j=|`�s|

C
j,mj
`,s;m` ,ms

|j, `, s; mji, (A.56a)

|j, `, s; mji =
`

Â
m`=�`

|ms |=|mj�m` |6s

�
C

j,mj
`,s;m` ,ms

�⇤|`, s; m`, msi, (A.56b)

where
C

j,mj
`,s;m` ,ms

:= hj, `, s; mj|`, s; m`, msi ⌘ hj, mj|`, s; m`, msi (A.56c)

are the Clebsch-Gordan coefficients, which by standard convention all have real values. In
addition, we have:
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and J and the eigenbasis (A.55) will be referred to as “composite.”

Of course, since both bases are complete, it follows that every element of one may be
expressed in terms of the elements of the other:

|`, s; m`, msi =
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C
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|j, `, s; mji, (A.56a)
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j,mj
`,s;m` ,ms

�⇤|`, s; m`, msi, (A.56b)

where
C

j,mj
`,s;m` ,ms

:= hj, `, s; mj|`, s; m`, msi ⌘ hj, mj|`, s; m`, msi (A.56c)

are the Clebsch-Gordan coefficients, which by standard convention all have real values. In
addition, we have:
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usually, one identifies a “marking” on the spinning object (the ice-skater’s face or a pattern
on the top), and the angular velocity is determined by following the motion of this marking.
Independently, one determines the moment of inertia for the same object in some way15, and
then computes the angular momentum from the so-obtained values of the moment of inertia
and the angular velocity. That is, there’s no such thing as an “angularmomentumometer.”

With elementary particles, the situation is even more indirect: by definition, elemen-
tary particles cannot have a “marking” the motion of which one could even in principle
follow, so as to measure the angular velocity, compute the moment of inertia, etc. Instead,
the angular momentum is even defined indirectly. For example, the intrinsic angular mo-
ment of an electron—the so-called spin—is in fact a fictive rotation [+ digression 2.1 on
p. 139] which one computes, by way of relation (2.24a), from the measured magnetic dipole
momentum.

In the situation when we have several magnetic fields, it is perfectly logical to compute
their vectorial sum. Conversely, since the dipole momenta of these magnetic fields define
spins and orbital angular momenta16, to the sum of magnetic fields then corresponds a sum
of angular momenta, both intrinsic (“spins”) and relative (“orbital”).

— ¶ —

The technique of adding angular momenta in quantum theory differs from “ordinary
vectorial addition” which is expected in classical physics, and this is discussed in great detail
in standard textbooks of quantum mechanics. We recall here the basic relations.

Let {L1, L2, L3} and {S1, S2, S3} be two triples of operators, of which each indepen-
dently satisfies the relations (A.38a)—regardless of their physical meaning—and let

[L j, Sk] = 0 for every pair of indices j, k = 1, 2, 3. (A.50)

These two triples then generate two separate copies of the SU(2) group, where elements
of one commute with the elements of the other, and we have SU(2)L ⇥ SU(2)S. One then
defines

J j := L j + S j, ) [J j, J k] = i# jk
mJ m, (A.51)

and the triple J i generates the diagonal subgroup SU(2)J ⇢ SU(2)L ⇥ SU(2)S. For each
triple, one defines operators such as J 2 and J±, yielding results akin to (A.38), repeating
the computations in digression A.2 on p. 489:

L2|`, m`i = `(`+1)|`, m`i, L3|`, m`i = m`|`, m`i; (A.52a)

S2|s, msi = s(s+1)|s, msi, S3|s, msi = ms|s, msi; (A.52b)

J 2|j, mji = j(j+1)|j, mji, J 3|j, mji = mj|j, mji. (A.52c)

The relation (A.50) implies that L2, L3, S2, S3 all mutually commute, so that the tensor
product of the eigenbases (A.52a) and (A.52b),

|`, s; m`, msi := |`, m`i ⌦ |s, msi, (A.53a)
15 In principle, this is possible by approximating the geometry of the object and its mass distribution, whereupon

one computes the moment of inertia by integrating, or by physically applying a force, and the moment of inertia
is computed as the ratio of the applied torque and the produced change in its angular velocity.

16 Although Bohr’s model of the atom depicts the electron as a point-particle that rotates about a point-like proton,
so that the rotation of electron’s charge forms a current that produces an “orbiting magnetic field,” experiments
actually only measure this magnetic field, from which then—in turn—one concludes about the rotating of the
mental image of the point-like electron in Bohr’s atom.
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is a simultaneous eigenbasis of all four operators:

L2|`, s; m`, msi = `(`+1)|`, s; m`, msi, S2|`, s; m`, msi = s(s+1)|`, s; m`, msi, (A.53b)
L3|`, s; m`, msi = m`|`, s; m`, msi, S3|`, s; m`, msi = ms|`, s; m`, msi. (A.53c)

The operator J 3 commutes with L2, L3, S2, S3, but is of course not linearly independent since
equation (A.51) implies that J 3 = L3 + S3. We thus also have that

J 3|`, s; m`, msi = (m`+ms)|`, s; m`, msi. (A.53d)

In turn,
[J 2, L3] = 2i#jk3L jSk = 2i(L1S2 � L2S1) = �[J 2, S3], (A.54)

and J 2 does not commute with every operator from the collection {L2, L3, S2, S3}. Thus,
{L2, L3, S2, S3} is a maximal collection of linearly independent mutually commuting opera-
tors.

In turn, the operators {J 2, L2, S2, J 3} also all mutually commute, and since L3 and S3
do not commute with J 2, this second operator quartet is also a maximal collection of linearly
independent mutually commuting operators. Thus they too have a simultaneous eigenbasis:

J 2|j, `, s; mji = j(j+1)|j, `, s; mji, L3|j, `, s; mji = `(`+1)|j, `, s; mji, (A.55a)

J 3|j, `, s; mji = mj|j, `, s; mji, S2|j, `, s; mji = s(s+1)|j, `, s; mji. (A.55b)

In textbooks of quantum mechanics are L identified with the orbital angular momen-
tum, S with the spin and J with the “total” angular momentum, (e.g. of an electron in a
hydrogen atom). Ignoring the fact that J does not include the nuclear spin, and so in reality
is not the total angular momentum, there exist many situations where there are more than
two triples of operators each of which that satisfies the relations such as do L and S, and
where at least some of such operators have no relation with rotations, even if fictitious. For
example, there is no obstruction to add—akin to equations (A.51)— the angular momentum
of a nucleon in one nucleus, say, with the isospin of that or any other nucleon.

Thus, L and S as well as their eigenbasis (A.53a) will be referred to as “constituent,”
and J and the eigenbasis (A.55) will be referred to as “composite.”

Of course, since both bases are complete, it follows that every element of one may be
expressed in terms of the elements of the other:

|`, s; m`, msi =
`+s

Â
j=|`�s|

C
j,mj
`,s;m` ,ms

|j, `, s; mji, (A.56a)

|j, `, s; mji =
`

Â
m`=�`

|ms |=|mj�m` |6s

�
C

j,mj
`,s;m` ,ms

�⇤|`, s; m`, msi, (A.56b)

where
C

j,mj
`,s;m` ,ms

:= hj, `, s; mj|`, s; m`, msi ⌘ hj, mj|`, s; m`, msi (A.56c)

are the Clebsch-Gordan coefficients, which by standard convention all have real values. In
addition, we have:
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is a simultaneous eigenbasis of all four operators:

L2|`, s; m`, msi = `(`+1)|`, s; m`, msi, S2|`, s; m`, msi = s(s+1)|`, s; m`, msi, (A.53b)
L3|`, s; m`, msi = m`|`, s; m`, msi, S3|`, s; m`, msi = ms|`, s; m`, msi. (A.53c)

The operator J 3 commutes with L2, L3, S2, S3, but is of course not linearly independent since
equation (A.51) implies that J 3 = L3 + S3. We thus also have that

J 3|`, s; m`, msi = (m`+ms)|`, s; m`, msi. (A.53d)

In turn,
[J 2, L3] = 2i#jk3L jSk = 2i(L1S2 � L2S1) = �[J 2, S3], (A.54)

and J 2 does not commute with every operator from the collection {L2, L3, S2, S3}. Thus,
{L2, L3, S2, S3} is a maximal collection of linearly independent mutually commuting opera-
tors.

In turn, the operators {J 2, L2, S2, J 3} also all mutually commute, and since L3 and S3
do not commute with J 2, this second operator quartet is also a maximal collection of linearly
independent mutually commuting operators. Thus they too have a simultaneous eigenbasis:

J 2|j, `, s; mji = j(j+1)|j, `, s; mji, L3|j, `, s; mji = `(`+1)|j, `, s; mji, (A.55a)

J 3|j, `, s; mji = mj|j, `, s; mji, S2|j, `, s; mji = s(s+1)|j, `, s; mji. (A.55b)

In textbooks of quantum mechanics are L identified with the orbital angular momen-
tum, S with the spin and J with the “total” angular momentum, (e.g. of an electron in a
hydrogen atom). Ignoring the fact that J does not include the nuclear spin, and so in reality
is not the total angular momentum, there exist many situations where there are more than
two triples of operators each of which that satisfies the relations such as do L and S, and
where at least some of such operators have no relation with rotations, even if fictitious. For
example, there is no obstruction to add—akin to equations (A.51)— the angular momentum
of a nucleon in one nucleus, say, with the isospin of that or any other nucleon.

Thus, L and S as well as their eigenbasis (A.53a) will be referred to as “constituent,”
and J and the eigenbasis (A.55) will be referred to as “composite.”

Of course, since both bases are complete, it follows that every element of one may be
expressed in terms of the elements of the other:

|`, s; m`, msi =
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j=|`�s|

C
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`,s;m` ,ms

|j, `, s; mji, (A.56a)

|j, `, s; mji =
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�⇤|`, s; m`, msi, (A.56b)

where
C

j,mj
`,s;m` ,ms

:= hj, `, s; mj|`, s; m`, msi ⌘ hj, mj|`, s; m`, msi (A.56c)

are the Clebsch-Gordan coefficients, which by standard convention all have real values. In
addition, we have:
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is a simultaneous eigenbasis of all four operators:

L2|`, s; m`, msi = `(`+1)|`, s; m`, msi, S2|`, s; m`, msi = s(s+1)|`, s; m`, msi, (A.53b)
L3|`, s; m`, msi = m`|`, s; m`, msi, S3|`, s; m`, msi = ms|`, s; m`, msi. (A.53c)

The operator J 3 commutes with L2, L3, S2, S3, but is of course not linearly independent since
equation (A.51) implies that J 3 = L3 + S3. We thus also have that

J 3|`, s; m`, msi = (m`+ms)|`, s; m`, msi. (A.53d)

In turn,
[J 2, L3] = 2i #

jk
3L jSk = 2i(L1S2 � L2S1) = �[J 2, S3], (A.54)

and J 2 does not commute with every operator from the collection {L2, L3, S2, S3}. Thus,
{L2, L3, S2, S3} is a maximal collection of linearly independent mutually commuting opera-
tors.

In turn, the operators {J 2, L2, S2, J 3} also all mutually commute, and since L3 and S3
do not commute with J 2, this second operator quartet is also a maximal collection of linearly
independent mutually commuting operators. Thus they too have a simultaneous eigenbasis:

J 2|j, `, s; mji = j(j+1)|j, `, s; mji, L3|j, `, s; mji = `(`+1)|j, `, s; mji, (A.55a)

J 3|j, `, s; mji = mj|j, `, s; mji, S2|j, `, s; mji = s(s+1)|j, `, s; mji. (A.55b)

In textbooks of quantum mechanics are L identified with the orbital angular momen-
tum, S with the spin and J with the “total” angular momentum, (e.g. of an electron in a
hydrogen atom). Ignoring the fact that J does not include the nuclear spin, and so in reality
is not the total angular momentum, there exist many situations where there are more than
two triples of operators each of which that satisfies the relations such as do L and S, and
where at least some of such operators have no relation with rotations, even if fictitious. For
example, there is no obstruction to add—akin to equations (A.51)— the angular momentum
of a nucleon in one nucleus, say, with the isospin of that or any other nucleon.

Thus, L and S as well as their eigenbasis (A.53a) will be referred to as “constituent,”
and J and the eigenbasis (A.55) will be referred to as “composite.”

Of course, since both bases are complete, it follows that every element of one may be
expressed in terms of the elements of the other:

|`, s; m`, msi =
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|j, `, s; mji, (A.56a)
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where
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j,mj
`,s;m` ,ms

:= hj, `, s; mj|`, s; m`, msi ⌘ hj, mj|`, s; m`, msi (A.56c)

are the Clebsch-Gordan coefficients, which by standard convention all have real values. In
addition, we have:
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is a simultaneous eigenbasis of all four operators:

L2|`, s; m`, msi = `(`+1)|`, s; m`, msi, S2|`, s; m`, msi = s(s+1)|`, s; m`, msi, (A.53b)
L3|`, s; m`, msi = m`|`, s; m`, msi, S3|`, s; m`, msi = ms|`, s; m`, msi. (A.53c)

The operator J 3 commutes with L2, L3, S2, S3, but is of course not linearly independent since
equation (A.51) implies that J 3 = L3 + S3. We thus also have that

J 3|`, s; m`, msi = (m`+ms)|`, s; m`, msi. (A.53d)

In turn,
[J 2, L3] = 2i #

jk
3L jSk = 2i(L1S2 � L2S1) = �[J 2, S3], (A.54)

and J 2 does not commute with every operator from the collection {L2, L3, S2, S3}. Thus,
{L2, L3, S2, S3} is a maximal collection of linearly independent mutually commuting opera-
tors.

In turn, the operators {J 2, L2, S2, J 3} also all mutually commute, and since L3 and S3
do not commute with J 2, this second operator quartet is also a maximal collection of linearly
independent mutually commuting operators. Thus they too have a simultaneous eigenbasis:

J 2|j, `, s; mji = j(j+1)|j, `, s; mji, L3|j, `, s; mji = `(`+1)|j, `, s; mji, (A.55a)

J 3|j, `, s; mji = mj|j, `, s; mji, S2|j, `, s; mji = s(s+1)|j, `, s; mji. (A.55b)

In textbooks of quantum mechanics are L identified with the orbital angular momen-
tum, S with the spin and J with the “total” angular momentum, (e.g. of an electron in a
hydrogen atom). Ignoring the fact that J does not include the nuclear spin, and so in reality
is not the total angular momentum, there exist many situations where there are more than
two triples of operators each of which that satisfies the relations such as do L and S, and
where at least some of such operators have no relation with rotations, even if fictitious. For
example, there is no obstruction to add—akin to equations (A.51)— the angular momentum
of a nucleon in one nucleus, say, with the isospin of that or any other nucleon.

Thus, L and S as well as their eigenbasis (A.53a) will be referred to as “constituent,”
and J and the eigenbasis (A.55) will be referred to as “composite.”

Of course, since both bases are complete, it follows that every element of one may be
expressed in terms of the elements of the other:
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where
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j,mj
`,s;m` ,ms

:= hj, `, s; mj|`, s; m`, msi ⌘ hj, mj|`, s; m`, msi (A.56c)

are the Clebsch-Gordan coefficients, which by standard convention all have real values. In
addition, we have:
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is a simultaneous eigenbasis of all four operators:

L2|`, s; m`, msi = `(`+1)|`, s; m`, msi, S2|`, s; m`, msi = s(s+1)|`, s; m`, msi, (A.53b)
L3|`, s; m`, msi = m`|`, s; m`, msi, S3|`, s; m`, msi = ms|`, s; m`, msi. (A.53c)

The operator J 3 commutes with L2, L3, S2, S3, but is of course not linearly independent since
equation (A.51) implies that J 3 = L3 + S3. We thus also have that

J 3|`, s; m`, msi = (m`+ms)|`, s; m`, msi. (A.53d)

In turn,
[J 2, L3] = 2i #

jk
3L jSk = 2i(L1S2 � L2S1) = �[J 2, S3], (A.54)

and J 2 does not commute with every operator from the collection {L2, L3, S2, S3}. Thus,
{L2, L3, S2, S3} is a maximal collection of linearly independent mutually commuting opera-
tors.

In turn, the operators {J 2, L2, S2, J 3} also all mutually commute, and since L3 and S3
do not commute with J 2, this second operator quartet is also a maximal collection of linearly
independent mutually commuting operators. Thus they too have a simultaneous eigenbasis:

J 2|j, `, s; mji = j(j+1)|j, `, s; mji, L3|j, `, s; mji = `(`+1)|j, `, s; mji, (A.55a)

J 3|j, `, s; mji = mj|j, `, s; mji, S2|j, `, s; mji = s(s+1)|j, `, s; mji. (A.55b)

In textbooks of quantum mechanics are L identified with the orbital angular momen-
tum, S with the spin and J with the “total” angular momentum, (e.g. of an electron in a
hydrogen atom). Ignoring the fact that J does not include the nuclear spin, and so in reality
is not the total angular momentum, there exist many situations where there are more than
two triples of operators each of which that satisfies the relations such as do L and S, and
where at least some of such operators have no relation with rotations, even if fictitious. For
example, there is no obstruction to add—akin to equations (A.51)— the angular momentum
of a nucleon in one nucleus, say, with the isospin of that or any other nucleon.

Thus, L and S as well as their eigenbasis (A.53a) will be referred to as “constituent,”
and J and the eigenbasis (A.55) will be referred to as “composite.”

Of course, since both bases are complete, it follows that every element of one may be
expressed in terms of the elements of the other:
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where
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j,mj
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:= hj, `, s; mj|`, s; m`, msi ⌘ hj, mj|`, s; m`, msi (A.56c)

are the Clebsch-Gordan coefficients, which by standard convention all have real values. In
addition, we have:
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is a simultaneous eigenbasis of all four operators:

L2|`, s; m`, msi = `(`+1)|`, s; m`, msi, S2|`, s; m`, msi = s(s+1)|`, s; m`, msi, (A.53b)
L3|`, s; m`, msi = m`|`, s; m`, msi, S3|`, s; m`, msi = ms|`, s; m`, msi. (A.53c)

The operator J 3 commutes with L2, L3, S2, S3, but is of course not linearly independent since
equation (A.51) implies that J 3 = L3 + S3. We thus also have that

J 3|`, s; m`, msi = (m`+ms)|`, s; m`, msi. (A.53d)

In turn,
[J 2, L3] = 2i #

jk
3L jSk = 2i(L1S2 � L2S1) = �[J 2, S3], (A.54)

and J 2 does not commute with every operator from the collection {L2, L3, S2, S3}. Thus,
{L2, L3, S2, S3} is a maximal collection of linearly independent mutually commuting opera-
tors.

In turn, the operators {J 2, L2, S2, J 3} also all mutually commute, and since L3 and S3
do not commute with J 2, this second operator quartet is also a maximal collection of linearly
independent mutually commuting operators. Thus they too have a simultaneous eigenbasis:

J 2|j, `, s; mji = j(j+1)|j, `, s; mji, L3|j, `, s; mji = `(`+1)|j, `, s; mji, (A.55a)

J 3|j, `, s; mji = mj|j, `, s; mji, S2|j, `, s; mji = s(s+1)|j, `, s; mji. (A.55b)

In textbooks of quantum mechanics are L identified with the orbital angular momen-
tum, S with the spin and J with the “total” angular momentum, (e.g. of an electron in a
hydrogen atom). Ignoring the fact that J does not include the nuclear spin, and so in reality
is not the total angular momentum, there exist many situations where there are more than
two triples of operators each of which that satisfies the relations such as do L and S, and
where at least some of such operators have no relation with rotations, even if fictitious. For
example, there is no obstruction to add—akin to equations (A.51)— the angular momentum
of a nucleon in one nucleus, say, with the isospin of that or any other nucleon.

Thus, L and S as well as their eigenbasis (A.53a) will be referred to as “constituent,”
and J and the eigenbasis (A.55) will be referred to as “composite.”

Of course, since both bases are complete, it follows that every element of one may be
expressed in terms of the elements of the other:
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where
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:= hj, `, s; mj|`, s; m`, msi ⌘ hj, mj|`, s; m`, msi (A.56c)

are the Clebsch-Gordan coefficients, which by standard convention all have real values. In
addition, we have:
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is a simultaneous eigenbasis of all four operators:

L2|`, s; m`, msi = `(`+1)|`, s; m`, msi, S2|`, s; m`, msi = s(s+1)|`, s; m`, msi, (A.53b)
L3|`, s; m`, msi = m`|`, s; m`, msi, S3|`, s; m`, msi = ms|`, s; m`, msi. (A.53c)

The operator J 3 commutes with L2, L3, S2, S3, but is of course not linearly independent since
equation (A.51) implies that J 3 = L3 + S3. We thus also have that

J 3|`, s; m`, msi = (m`+ms)|`, s; m`, msi. (A.53d)

In turn,
[J 2, L3] = 2i #

jk
3L jSk = 2i(L1S2 � L2S1) = �[J 2, S3], (A.54)

and J 2 does not commute with every operator from the collection {L2, L3, S2, S3}. Thus,
{L2, L3, S2, S3} is a maximal collection of linearly independent mutually commuting opera-
tors.

In turn, the operators {J 2, L2, S2, J 3} also all mutually commute, and since L3 and S3
do not commute with J 2, this second operator quartet is also a maximal collection of linearly
independent mutually commuting operators. Thus they too have a simultaneous eigenbasis:

J 2|j, `, s; mji = j(j+1)|j, `, s; mji, L3|j, `, s; mji = `(`+1)|j, `, s; mji, (A.55a)

J 3|j, `, s; mji = mj|j, `, s; mji, S2|j, `, s; mji = s(s+1)|j, `, s; mji. (A.55b)

In textbooks of quantum mechanics are L identified with the orbital angular momen-
tum, S with the spin and J with the “total” angular momentum, (e.g. of an electron in a
hydrogen atom). Ignoring the fact that J does not include the nuclear spin, and so in reality
is not the total angular momentum, there exist many situations where there are more than
two triples of operators each of which that satisfies the relations such as do L and S, and
where at least some of such operators have no relation with rotations, even if fictitious. For
example, there is no obstruction to add—akin to equations (A.51)— the angular momentum
of a nucleon in one nucleus, say, with the isospin of that or any other nucleon.

Thus, L and S as well as their eigenbasis (A.53a) will be referred to as “constituent,”
and J and the eigenbasis (A.55) will be referred to as “composite.”

Of course, since both bases are complete, it follows that every element of one may be
expressed in terms of the elements of the other:
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where
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are the Clebsch-Gordan coefficients, which by standard convention all have real values. In
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is a simultaneous eigenbasis of all four operators:

L2|`, s; m`, msi = `(`+1)|`, s; m`, msi, S2|`, s; m`, msi = s(s+1)|`, s; m`, msi, (A.53b)
L3|`, s; m`, msi = m`|`, s; m`, msi, S3|`, s; m`, msi = ms|`, s; m`, msi. (A.53c)

The operator J 3 commutes with L2, L3, S2, S3, but is of course not linearly independent since
equation (A.51) implies that J 3 = L3 + S3. We thus also have that

J 3|`, s; m`, msi = (m`+ms)|`, s; m`, msi. (A.53d)

In turn,
[J 2, L3] = 2i #

jk
3L jSk = 2i(L1S2 � L2S1) = �[J 2, S3], (A.54)

and J 2 does not commute with every operator from the collection {L2, L3, S2, S3}. Thus,
{L2, L3, S2, S3} is a maximal collection of linearly independent mutually commuting opera-
tors.

In turn, the operators {J 2, L2, S2, J 3} also all mutually commute, and since L3 and S3
do not commute with J 2, this second operator quartet is also a maximal collection of linearly
independent mutually commuting operators. Thus they too have a simultaneous eigenbasis:

J 2|j, `, s; mji = j(j+1)|j, `, s; mji, L2|j, `, s; mji = `(`+1)|j, `, s; mji, (A.55a)

J 3|j, `, s; mji = mj|j, `, s; mji, S2|j, `, s; mji = s(s+1)|j, `, s; mji. (A.55b)

In textbooks of quantum mechanics are L identified with the orbital angular momen-
tum, S with the spin and J with the “total” angular momentum, (e.g. of an electron in a
hydrogen atom). Ignoring the fact that J does not include the nuclear spin, and so in reality
is not the total angular momentum, there exist many situations where there are more than
two triples of operators each of which that satisfies the relations such as do L and S, and
where at least some of such operators have no relation with rotations, even if fictitious. For
example, there is no obstruction to add—akin to equations (A.51)— the angular momentum
of a nucleon in one nucleus, say, with the isospin of that or any other nucleon.

Thus, L and S as well as their eigenbasis (A.53a) will be referred to as “constituent,”
and J and the eigenbasis (A.55) will be referred to as “composite.”

Of course, since both bases are complete, it follows that every element of one may be
expressed in terms of the elements of the other:
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j,mj
`,s;m` ,ms
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üb

sc
h,

th
ub

sc
h@

ho
w

ar
d.

ed
u,

w
ith

an
y

co
m

m
en

ts
/

su
gg

es
tio

ns
/

co
rr

ec
tio

ns
;t

ha
nk

yo
u!

—
D

R
A

FT



Q 
M 
I

Since(both(bases(are(complete,

where

are(the(Clebsch]Gordan(coefAicients
They(vanish(unless

Angular Momenta
“Addition” of Angular Momenta

10

496 Appendix A. Groups: Structure and Notation

is a simultaneous eigenbasis of all four operators:

L2|`, s; m`, msi = `(`+1)|`, s; m`, msi, S2|`, s; m`, msi = s(s+1)|`, s; m`, msi, (A.53b)
L3|`, s; m`, msi = m`|`, s; m`, msi, S3|`, s; m`, msi = ms|`, s; m`, msi. (A.53c)

The operator J 3 commutes with L2, L3, S2, S3, but is of course not linearly independent since
equation (A.51) implies that J 3 = L3 + S3. We thus also have that

J 3|`, s; m`, msi = (m`+ms)|`, s; m`, msi. (A.53d)

In turn,
[J 2, L3] = 2i #

jk
3L jSk = 2i(L1S2 � L2S1) = �[J 2, S3], (A.54)

and J 2 does not commute with every operator from the collection {L2, L3, S2, S3}. Thus,
{L2, L3, S2, S3} is a maximal collection of linearly independent mutually commuting opera-
tors.

In turn, the operators {J 2, L2, S2, J 3} also all mutually commute, and since L3 and S3
do not commute with J 2, this second operator quartet is also a maximal collection of linearly
independent mutually commuting operators. Thus they too have a simultaneous eigenbasis:

J 2|j, `, s; mji = j(j+1)|j, `, s; mji, L3|j, `, s; mji = `(`+1)|j, `, s; mji, (A.55a)

J 3|j, `, s; mji = mj|j, `, s; mji, S2|j, `, s; mji = s(s+1)|j, `, s; mji. (A.55b)

In textbooks of quantum mechanics are L identified with the orbital angular momen-
tum, S with the spin and J with the “total” angular momentum, (e.g. of an electron in a
hydrogen atom). Ignoring the fact that J does not include the nuclear spin, and so in reality
is not the total angular momentum, there exist many situations where there are more than
two triples of operators each of which that satisfies the relations such as do L and S, and
where at least some of such operators have no relation with rotations, even if fictitious. For
example, there is no obstruction to add—akin to equations (A.51)— the angular momentum
of a nucleon in one nucleus, say, with the isospin of that or any other nucleon.

Thus, L and S as well as their eigenbasis (A.53a) will be referred to as “constituent,”
and J and the eigenbasis (A.55) will be referred to as “composite.”

Of course, since both bases are complete, it follows that every element of one may be
expressed in terms of the elements of the other:
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where
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:= hj, `, s; mj|`, s; m`, msi ⌘ hj, mj|`, s; m`, msi (A.56c)

are the Clebsch-Gordan coefficients, which by standard convention all have real values. In
addition, we have:
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is a simultaneous eigenbasis of all four operators:

L2|`, s; m`, msi = `(`+1)|`, s; m`, msi, S2|`, s; m`, msi = s(s+1)|`, s; m`, msi, (A.53b)
L3|`, s; m`, msi = m`|`, s; m`, msi, S3|`, s; m`, msi = ms|`, s; m`, msi. (A.53c)

The operator J 3 commutes with L2, L3, S2, S3, but is of course not linearly independent since
equation (A.51) implies that J 3 = L3 + S3. We thus also have that

J 3|`, s; m`, msi = (m`+ms)|`, s; m`, msi. (A.53d)

In turn,
[J 2, L3] = 2i #

jk
3L jSk = 2i(L1S2 � L2S1) = �[J 2, S3], (A.54)

and J 2 does not commute with every operator from the collection {L2, L3, S2, S3}. Thus,
{L2, L3, S2, S3} is a maximal collection of linearly independent mutually commuting opera-
tors.

In turn, the operators {J 2, L2, S2, J 3} also all mutually commute, and since L3 and S3
do not commute with J 2, this second operator quartet is also a maximal collection of linearly
independent mutually commuting operators. Thus they too have a simultaneous eigenbasis:

J 2|j, `, s; mji = j(j+1)|j, `, s; mji, L3|j, `, s; mji = `(`+1)|j, `, s; mji, (A.55a)

J 3|j, `, s; mji = mj|j, `, s; mji, S2|j, `, s; mji = s(s+1)|j, `, s; mji. (A.55b)

In textbooks of quantum mechanics are L identified with the orbital angular momen-
tum, S with the spin and J with the “total” angular momentum, (e.g. of an electron in a
hydrogen atom). Ignoring the fact that J does not include the nuclear spin, and so in reality
is not the total angular momentum, there exist many situations where there are more than
two triples of operators each of which that satisfies the relations such as do L and S, and
where at least some of such operators have no relation with rotations, even if fictitious. For
example, there is no obstruction to add—akin to equations (A.51)— the angular momentum
of a nucleon in one nucleus, say, with the isospin of that or any other nucleon.

Thus, L and S as well as their eigenbasis (A.53a) will be referred to as “constituent,”
and J and the eigenbasis (A.55) will be referred to as “composite.”

Of course, since both bases are complete, it follows that every element of one may be
expressed in terms of the elements of the other:
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where
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are the Clebsch-Gordan coefficients, which by standard convention all have real values. In
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is a simultaneous eigenbasis of all four operators:

L2|`, s; m`, msi = `(`+1)|`, s; m`, msi, S2|`, s; m`, msi = s(s+1)|`, s; m`, msi, (A.53b)
L3|`, s; m`, msi = m`|`, s; m`, msi, S3|`, s; m`, msi = ms|`, s; m`, msi. (A.53c)

The operator J 3 commutes with L2, L3, S2, S3, but is of course not linearly independent since
equation (A.51) implies that J 3 = L3 + S3. We thus also have that

J 3|`, s; m`, msi = (m`+ms)|`, s; m`, msi. (A.53d)

In turn,
[J 2, L3] = 2i #

jk
3L jSk = 2i(L1S2 � L2S1) = �[J 2, S3], (A.54)

and J 2 does not commute with every operator from the collection {L2, L3, S2, S3}. Thus,
{L2, L3, S2, S3} is a maximal collection of linearly independent mutually commuting opera-
tors.

In turn, the operators {J 2, L2, S2, J 3} also all mutually commute, and since L3 and S3
do not commute with J 2, this second operator quartet is also a maximal collection of linearly
independent mutually commuting operators. Thus they too have a simultaneous eigenbasis:

J 2|j, `, s; mji = j(j+1)|j, `, s; mji, L3|j, `, s; mji = `(`+1)|j, `, s; mji, (A.55a)

J 3|j, `, s; mji = mj|j, `, s; mji, S2|j, `, s; mji = s(s+1)|j, `, s; mji. (A.55b)

In textbooks of quantum mechanics are L identified with the orbital angular momen-
tum, S with the spin and J with the “total” angular momentum, (e.g. of an electron in a
hydrogen atom). Ignoring the fact that J does not include the nuclear spin, and so in reality
is not the total angular momentum, there exist many situations where there are more than
two triples of operators each of which that satisfies the relations such as do L and S, and
where at least some of such operators have no relation with rotations, even if fictitious. For
example, there is no obstruction to add—akin to equations (A.51)— the angular momentum
of a nucleon in one nucleus, say, with the isospin of that or any other nucleon.

Thus, L and S as well as their eigenbasis (A.53a) will be referred to as “constituent,”
and J and the eigenbasis (A.55) will be referred to as “composite.”

Of course, since both bases are complete, it follows that every element of one may be
expressed in terms of the elements of the other:
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where
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:= hj, `, s; mj|`, s; m`, msi ⌘ hj, mj|`, s; m`, msi (A.56c)

are the Clebsch-Gordan coefficients, which by standard convention all have real values. In
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Theorem A.2 For the sum of two triples of operators, Li + Si = J i, each of which that
satisfies relations (A.38) and (A.50), the relations (A.52) follow, as well as:

|`� s| 6 j 6 (`+ s), |j � `| 6 s 6 (j + `), |j � s| 6 ` 6 (j + s), (A.57)
mj = m` + ms, |mj| 6 j, |m`| 6 `, |ms| 6 s, (A.58)

where j, ` and s assume precisely once all the integrally separated values within the
indicated limits.

Thus, using the notation from the left-most two columns of table A.2 on p. 492, we have
that

V` ⌦ Vs = �(`+s)
j=|`�s|Vj , (2`+1)⌦ (2s+1) = �(`+s)

j=|`�s|(2j+1) (A.59)

For example:

V` ⌦ Vs = Vj , (2`+1)⌦ (2s+1) = (2j+1)
V1/2 ⌦V1/2 = V1 � V0 , 2 ⌦ 2 = 3 � 1
V1 ⌦V1/2 = V3/2 � V1/2 , 3 ⌦ 2 = 4 � 2
V1 ⌦ V1 = V2 � V1 � V0 , 3 ⌦ 3 = 5 � 3 � 1
V2 ⌦ V1 = V3 � V2 � V2 , 5 ⌦ 3 = 7 � 5 � 3

(A.60)

and so on. The first row here corresponds to the detailed relations:

V1/2 =
�

c+| 1
2 ,+ 1

2 i+ c�| 1
2 ,� 1

2 i
 

, (A.61)�
c+| 1

2 ,+ 1
2 i+ c�| 1

2 ,� 1
2 i
 
⌦
�

c0+| 1
2 ,+ 1

2 i0 + c0�| 1
2 ,� 1

2 i0
 

=
�

c1|1,+1i+ c0|1, 0i+ c�1|1,�1i
 
�
�

c00|0, 0i
 

(A.62)

where {c+, c�}, {c0+c0�} and {c1, c0, c�1; c00} are coefficients in the linear combinations ap-
propriate for the vector spaces V1/2, V0

1/2, V1 and V0, and where

|1,+1i = | 1
2 ,+ 1

2 i| 1
2 ,+ 1

2 i0, (A.63a)

V1 :

8>><>>: |1, 0i = 1p
2

⇣
| 1

2 ,+ 1
2 i| 1

2 ,� 1
2 i0 + | 1

2 ,� 1
2 i| 1

2 ,+ 1
2 i0
⌘

, (A.63b)

|1,�1i = | 1
2 ,� 1

2 i| 1
2 ,� 1

2 i0, (A.63c)

V0 : |0, 0i = 1p
2

⇣
| 1

2 ,+ 1
2 i| 1

2 ,� 1
2 i0 � | 1

2 ,� 1
2 i| 1

2 ,+ 1
2 i0
⌘

. (A.63d)

For bigger groups is this detailed representation also possible, but the notation becomes
more complicated, so statements expressed in the “dimensional” notation, in the right-hand
side of tabulation (A.60), are more often found in the physics literature.

Corollary A.1 Every representation Vj may be assigned a parity, p(Vj) := 2j (mod 2),
so p(Vj) = 0 for tensors, and p(Vj) = 1 for spinors [+ definition (A.42)]. Then it
follows that parity is mod-2 additive: p(V`⌦Vs) ⌘ 2(`+s) mod 2.D
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