Quantum Mechanics I

Three-Dimensional Space:
 Rotations, Angular Momenta and Composite Systems

Department of Physics and Astronomy, Howard University, Washington DC http:/physicsl.howard.edu/~thubsch/.

Angular Momenta

ALGebraic Salutian af LHa

Changed variables: $Q, P \rightarrow a, a^{+}$so that $\left[a, a^{+}\right]=1$:
Q Hamiltonian $H=\hbar \omega\left(a^{\dagger} a+1 / 2\right) \quad H|n\rangle=E_{n}|n\rangle \quad E_{n}=\hbar \omega\left(n+\frac{1}{2}\right)$
Q $\mathrm{w} / N:=a^{\dagger} a$, so $\quad[N, a]=-a \quad\left[N, a^{\dagger}\right]=+a^{\dagger}$
Q Then $\quad N|n\rangle=n|n\rangle \quad a|n\rangle=\sqrt{n}|n-1\rangle \quad a^{\dagger}|n\rangle=\sqrt{n+1}|n+1\rangle$

$$
\mathscr{H}=\left\{|n\rangle=\frac{1}{\sqrt{n!}}\left(a^{\dagger}\right)^{n}|0\rangle:\left\langle n \mid n^{\prime}\right\rangle=\delta_{n, n^{\prime}}, \quad \sum_{n=0}^{\infty}|n\rangle\langle n|=\mathbb{1}\right\}
$$

Q and
$\langle m| R\left(a, a^{\dagger}\right)|n\rangle=\sum_{p, q=0}^{\infty} c_{p, q}\langle m|\left(a^{\dagger}\right)^{p}(a)^{q}|n\rangle$

$$
\begin{aligned}
=\sum_{p, q=0}^{\infty} c_{p, q} & \sqrt{n(n-1) \cdots(n-q+1)} \\
& \times \sqrt{(n-q+1)(n-q+2) \cdots(n-q+p)} \delta_{m, n-q+p}
\end{aligned}
$$

$$
\psi_{0}(x)=N e^{-\frac{1}{2} \alpha x^{2}} \quad \alpha=\frac{M \omega}{\hbar} \quad N=\sqrt[4]{\frac{\alpha}{\pi}}
$$

Angular Momenta

3D SPACE \& RロTATIUNS

Θ In 3D space, $W(\vec{r})=W(r) \quad \frac{\partial W}{\partial \theta}=0=\frac{\partial W}{\partial \phi}$

3D rotational symmetry

Q Then [see Arfken \& Webber, exercises 2.5.13-2.5.17]

$$
\begin{gathered}
\vec{\nabla}^{2} f(\vec{r})=\frac{1}{r}\left(\frac{\partial^{2}}{\partial r^{2}} r f\right)-\frac{1}{r^{2}} \vec{L}^{2} f \quad \vec{L}^{2} f:=-\frac{1}{\sin \theta} \frac{\partial}{\partial \theta}\left[\sin \theta \frac{\partial f}{\partial \theta}\right]-\frac{1}{\sin ^{2} \theta} \frac{\partial^{2} f}{\partial \phi^{2}} \\
\vec{L}=-i(\vec{r} \times \vec{\nabla})=i\left(\hat{\mathrm{e}}_{\theta} \frac{1}{\sin \theta} \frac{\partial}{\partial \phi}-\hat{\mathrm{e}}_{\phi} \frac{\partial}{\partial \theta}\right)
\end{gathered}
$$

Use algebra. In Cartesian coordinates [A\&W 1.8.7],

$$
\begin{aligned}
& L_{i}=-i \varepsilon_{j k}^{\ell} x^{k} \frac{\partial}{\partial x^{\ell}} \quad L_{x}=-i\left(y \frac{\partial}{\partial z}-z \frac{\partial}{\partial y}\right) \text {, etc. } \\
& {\left[L_{j}, L_{k}\right]=i \varepsilon_{j k}^{\ell} L_{\ell} \quad\left(L_{j}\right)^{+}=L_{j}}
\end{aligned}
$$

No two of L_{j} commute, no simultaneous eigenvectors
Instead: $\vec{L}^{2}:=L_{x}{ }^{2}+L_{y}{ }^{2}+L_{z}{ }^{2} \quad\left[\vec{L}^{2}, L_{j}\right]=0$
Q
Pick $L_{z}=L_{3}$, so $\quad \vec{L}^{2}|\lambda, m\rangle=\lambda|\lambda, m\rangle \quad L_{3}|\lambda, m\rangle=m|\lambda, m\rangle$
@ \& figure out everything we can about λ and m.

Angular Momenta

3D Space \& Rotations

$$
\vec{L}^{2}:=L_{x}^{2}+L_{y}{ }^{2}+L_{z}^{2}
$$

Now, compute

$$
\langle\lambda, m| \vec{L}^{2}|\lambda, m\rangle=\lambda,=\underbrace{\left\langle L_{x}^{2}\right\rangle+\left\langle L_{y}^{2}\right\rangle}_{\geqslant 0}+\left[\left\langle L_{z}^{2}\right\rangle=m^{2}\right] \text { so } \lambda \geq m^{2}
$$

9 Now, define $L_{ \pm}:=L_{x} \pm i L_{y}$
Q SO

$$
\begin{aligned}
{\left[L_{3}, L_{ \pm}\right] } & = \pm L_{ \pm} \quad\left[L_{+}, L_{-}\right]=2 L_{3} \quad\left[\vec{L}^{2}, L_{ \pm}\right]=0 \\
L_{ \pm} L_{\mp} & =L_{x}^{2}+L_{y}^{2} \mp i\left[L_{x}, L_{y}\right]=L_{x}^{2}+L_{y}^{2} \pm L_{z}
\end{aligned}
$$

© Then $L_{3}\left(L_{ \pm}|\lambda, m\rangle\right)=\left(L_{ \pm} L_{3} \pm L_{ \pm}\right)|\lambda, m\rangle=(m \pm 1)\left(L_{ \pm}|\lambda, m\rangle\right)$

$$
L_{ \pm}|\lambda, m\rangle=C_{ \pm}|\lambda, m \pm 1\rangle
$$

Q so $\left.\left.\left|L_{ \pm}\right| \lambda, m\right\rangle\left.\right|^{2}=\left|C_{ \pm}\right| \lambda, m \pm 1\right\rangle\left.\right|^{2}=\left|C_{ \pm}\right|^{2} \geqslant 0$

$$
\left.=\langle\lambda, m| L_{\mp} L_{ \pm}|\lambda, m\rangle=\right]\langle\lambda, m|\left[L_{x}^{2}+L_{y}^{2} \mp L_{3}\right]|\lambda, m\rangle
$$

$$
=\langle\lambda, m|\left[\vec{L}^{2}-L_{3}{ }^{2} \mp L_{3}\right]|\lambda, m\rangle=\lambda-m^{2} \mp m
$$

@ and $\lambda \geq m(m \pm 1) . \quad j:=\max (|m|)$

$$
\lambda=j(j+1)
$$

$$
C_{ \pm}=\sqrt{j(j+1)-m(m \pm 1)}
$$

Angular Momenta

3D SPACE \& RロTATIINS
QRedefine $|\lambda, m\rangle \rightarrow|j, m\rangle \vec{L}^{2}|j, m\rangle=j(j+1)|j, m\rangle \quad L_{3}|j, m\rangle=m|j, m\rangle$
Q where $L_{ \pm}|j, m\rangle=\sqrt{j(j+1)-m(m \pm 1)}|j, m \pm 1\rangle$
Q Notice: $L_{+}|j, j\rangle=0 \quad L_{-}|j,-j\rangle=0 \quad$ (just like a $|0\rangle=0$)
Thus: $\quad V_{j}:=\left\{|j, m\rangle:-j \leqslant m \leqslant j, \Delta m^{2} \in \mathbb{Z}\right\} \quad 2 j \in \mathbb{Z}$

$$
U_{\vec{\varphi}} V_{j}:=\exp \{-i \vec{\varphi} \cdot \vec{L}\} V_{j}=\exp \left\{-i\left(\varphi^{ \pm} L_{ \pm}+\varphi^{3} L_{3}\right)\right\} V_{j}=V_{j}
$$

Generalize:
$L_{j} \rightarrow J_{j}=L_{j}+S_{j}$
© where L_{j} operate on the positional factor
@ while S_{j} operate on the directional factor

	dim.	formal ket-notation
V_{0}	1	$\{\|0,0\rangle\}$
$\boldsymbol{V}_{\frac{1}{2}}$	2	$\left\{\left\|\frac{1}{2},-\frac{1}{2}\right\rangle,\left\|\frac{1}{2},+\frac{1}{2}\right\rangle\right\}$
V_{1}	3	$\{\|1,-1\rangle,\|1,0\rangle,\|1,+1\rangle\}$

Angular Momenta

3D SPACE \& RGTATIUNS
Can use (spherical) coordinate representation

$$
\vec{L}^{2}=-\left[\frac{1}{\sin (\theta)} \frac{\partial}{\partial \theta}\left(\sin (\theta) \frac{\partial}{\partial \theta}\right)+\frac{1}{\sin ^{2}(\theta)} \frac{\partial^{2}}{\partial \phi^{2}}\right]
$$

$L_{ \pm}= \pm e^{ \pm i \phi}\left[\frac{\partial}{\partial \theta} \pm i \cot (\theta) \frac{\partial}{\partial \phi}\right], \quad L_{3}=-i \frac{\partial}{\partial \phi^{\prime}}$
and define

$$
Y_{\ell}^{m}(\theta, \phi):=\langle\vec{r} \mid \ell, m\rangle
$$

© Then $|1, \pm 1\rangle \leftrightarrow Y_{1}^{ \pm 1}(\theta, \phi)=-\sqrt{\frac{3}{8 \pi}} \sin \theta e^{ \pm i \phi}$,

$$
|1,0\rangle \leftrightarrow Y_{1}^{0}(\theta, \phi)=+\sqrt{\frac{3}{4 \pi}} \cos \theta,
$$

Q but also

$$
\begin{array}{lll}
x=r \sin \theta \cos \phi=-r \sqrt{\frac{2 \pi}{3}} \\
\left.y=r \sin \theta \sin \phi=i r \sqrt{\frac{2 \pi}{3}}(\theta, \phi)+Y_{1}^{-1}(\theta, \phi)\right) & \Leftrightarrow|1,+1\rangle+|1,-1\rangle, \\
\left.z=r \sin \phi \quad=r \sqrt{\frac{4 \pi}{3}} Y_{1}^{0}(\theta, \phi)-Y_{1}^{-1}(\theta, \phi)\right) & \Leftrightarrow|1,+1\rangle-|1,-1\rangle, \\
z & \Leftrightarrow|1,0\rangle .
\end{array}
$$

Angular Momenta

"ADDITIロN" ${ }^{6 \prime}$ AF ANGULAR MロMENTA

- By definition,

$$
e^{-i \theta \cdot J} \Psi(\boldsymbol{r}, t)=\langle\boldsymbol{r}| e^{-i \theta \cdot J}|\Psi(t)\rangle=\langle\boldsymbol{r}| e^{-i \theta \cdot(L+S)}|\Psi(t)\rangle
$$

© so $L_{j}\left(S_{j}\right)$ act in the "real/positional" (Hilbert) space (of states)
Q they commute: $\left[L_{j}, S_{k}\right]=0$ and $\left[L_{j}, L_{k}\right]=i \varepsilon_{j k^{m}} L_{m} \&\left[S_{j}, S_{k}\right]=i \varepsilon_{j k^{m}} S_{m}$
Q then $J_{j}:=L_{j}+S_{j} \quad \Rightarrow \quad\left[J_{j}, J_{k}\right]=i \varepsilon_{j k}{ }^{m} J_{m}$,
Q and $\quad L^{2}\left|\ell, m_{\ell}\right\rangle=\ell(\ell+1)\left|\ell, m_{\ell}\right\rangle, \quad L_{3}\left|\ell, m_{\ell}\right\rangle=m_{\ell}\left|\ell, m_{\ell}\right\rangle$;

$$
\begin{aligned}
s^{2}\left|s, m_{s}\right\rangle & =s(s+1)\left|s, m_{s}\right\rangle, & s_{3}\left|s, m_{s}\right\rangle & =m_{s}\left|s, m_{s}\right\rangle ; \\
J^{2}\left|j, m_{j}\right\rangle & =j(j+1)\left|j, m_{j}\right\rangle, & J_{3}\left|j, m_{j}\right\rangle & =m_{j}\left|j, m_{j}\right\rangle .
\end{aligned}
$$

Q The maximal subset of independent commuting operators:

composite | \vec{J}^{2} | J_{3} | \vec{L}^{2} | \vec{S}^{2} | L_{3} | S_{3} | product |
| ---: | ---: | :--- | :--- | :--- | :--- | :--- |
| $\left\|j, \ell, s ; m_{j}\right\rangle$ | | | $\left\|\ell, s ; m_{\ell}, m_{s}\right\rangle:=\left\|\ell, m_{\ell}\right\rangle \otimes\left\|s, m_{s}\right\rangle$ | | | |

Angular Momenta

"ADDITIロN" ${ }^{4 \prime}$ AF ANGULAR MoMENTA

Q In the product basis, by definition:

$$
\begin{aligned}
& \qquad \begin{array}{l}
L^{2}\left|\ell, s ; m_{\ell}, m_{s}\right\rangle=\ell(\ell+1)\left|\ell, s ; m_{\ell}, m_{s}\right\rangle, \\
L_{3}\left|\ell, s ; m_{\ell}, m_{s}\right\rangle=m_{\ell}\left|\ell, s ; m_{\ell}, m_{s}\right\rangle, \\
S^{2}\left|\ell, s ; m_{\ell}, m_{s}\right\rangle=s(s+1)\left|\ell, s ; m_{\ell}, m_{s}\right\rangle, \\
S_{3}\left|\ell, s ; m_{\ell}, m_{s}\right\rangle=m_{s}\left|\ell, s ; m_{\ell}, m_{s}\right\rangle .
\end{array} \quad\left\{L^{2}, L_{3}, S^{2}, s_{3}\right\} \\
& \text { © Also, } \quad J_{3}\left|\ell, s ; m_{\ell,}, m_{s}\right\rangle=\left(m_{\ell}+m_{s}\right)\left|\ell, s ; m_{\ell,}, m_{s}\right\rangle \text { is not independent. } \\
& \text { In turn, }\left[J^{2}, L_{3}\right]=2 i \varepsilon^{j k}{ }_{3} L_{j} s_{k}=2 i\left(L_{1} S_{2}-L_{2} S_{1}\right)=-\left[J^{2}, S_{3}\right]
\end{aligned}
$$

In the composite basis,

$$
\begin{aligned}
J^{2}\left|j, \ell, s ; m_{j}\right\rangle & =j(j+1)\left|j, \ell, s ; m_{j}\right\rangle, \\
J_{3}\left|j, \ell, s ; m_{j}\right\rangle & =m_{j}\left|j, \ell, s ; m_{j}\right\rangle, \\
L^{2}\left|j, \ell, s ; m_{j}\right\rangle & =\ell(\ell+1)\left|j, \ell, s ; m_{j}\right\rangle, \\
s^{2}\left|j, \ell, s ; m_{j}\right\rangle & =s(s+1)\left|j, \ell, s ; m_{j}\right\rangle .
\end{aligned}
$$

$\left\{J^{2}, L^{2}, S^{2}, J_{3}\right\}$

Angular Momenta

"ADDITIロN" \square "ANGULAR MロMENTA

Q Since both bases are complete,

$$
\begin{aligned}
& \left|\ell, s ; m_{\ell,}, m_{s}\right\rangle= \\
& \sum_{j=|\ell-s|}^{\ell+s} C_{\ell, s ; m_{\ell}, m_{s}}^{j, m_{j}}\left|j, \ell, s ; m_{j}\right\rangle, \\
& \quad\left|j, \ell, s ; m_{j}\right\rangle=\sum_{\substack{m_{\ell}=-\ell \\
\left|m_{s}\right|=\left|m_{j}-m_{\ell}\right| s s}}^{\ell}\left(C_{\ell, s ; m_{\ell}, m_{s}}^{j, m_{s}}\right)^{*}\left|\ell, s ; m_{\ell,} m_{s}\right\rangle, \\
& \text { Qwere }
\end{aligned}
$$

$$
\mathcal{C}_{\ell, s ; m_{\ell}, m_{s}}^{j, m_{j}}:=\left\langle j, \ell, s ; m_{j} \mid \ell, s_{;} ; m_{\ell,} m_{s}\right\rangle \equiv\left\langle j, m_{j} \mid \ell, s ; m_{\ell,} m_{s}\right\rangle
$$

Q are the Clebsch-Gordan coefficients
Q They vanish unless

$$
\begin{gathered}
|\ell-s| \leqslant j \leqslant(\ell+s), \quad|j-\ell| \leqslant s \leqslant(j+\ell), \quad|j-s| \leqslant \ell \leqslant(j+s), \\
m_{j}=m_{\ell}+m_{s,}, \quad\left|m_{j}\right| \leqslant j, \quad\left|m_{\ell}\right| \leqslant \ell, \quad\left|m_{s}\right| \leqslant s,
\end{gathered}
$$

