Quantum Mechanics I

Quantum Dynamics

Quantization & Compositeness Equations of Motion Conservation Laws

Tristan Hübsch

Department of Physics and Astronomy, Howard University, Washington DC <u>http://physics1.howard.edu/~thubsch/</u>

QUANTIZATION AND COMPOSITENESS

- Frequent approach: "quantizing a classical model"
 - \bigcirc Ambiguous: classically *AB* = *BA*, quantum-ly *AB* ≠ *BA*
 - Normal ordering: a pre-agreed ordering
 - Generation Construction Cons
- On general grounds, quantum \rightarrow classical
 - Subtle: details: Ch.14 & 15
 Subtle: details: Ch.14 & 15
 - Classical should not be able to "cover" all of quantum
 - O Approach: build quantum physics from ground up
 - such that it recovers classical physics in the correct "limit"
 N. Bohr's "correspondence principle"
 - Solution Sufficient: Just as f(x) is not determined from f(0) alone
 - There exist "purely" quantum phenomena
 - Real space (of positions) vs. Hilbert space (of states)

QUANTIZATION AND COMPOSITENESS

- Must start somewhere Canonical quantization ...might as well from classical \bigcirc Assign $A \rightarrow A = \omega(A)$ according to any fixed ordering scheme \odot Compute the anomaly, $\Delta_{AB} := [\omega(A), \omega(B)] - \omega(\{A, B\}_{PB})$ \subseteq If *A*, *B* generate a gauge symmetry (e.g., EM), Δ_{AB} must vanish If *A*, *B* generate a non-gauge symmetry, Δ_{AB} must be conserved Useful in phase-transition: "anomaly matching conditions" This assumes a classical formulation is known, for comparison \bigcirc In general, classical observables f(p,q) over phase space \subseteq But, $[Q_{\alpha}, P_{\beta}] = i\hbar \delta_{\alpha\beta} \mathbb{1} \Rightarrow Q_{\alpha}$ and P_{β} cannot both be "just" variables Some half of them must act as derivatives w.r.t. the other half \bigcirc Choice of "polarization" \Rightarrow Geometric Quantization program Other quantization frameworks …must work in all known/understood applications
 - ...and work (better) where canonical quantization fails

QUANTIZATION AND COMPOSITENESS

- Service Everything is composite
 - System = composite, comprised of sub-systems
 - Sub-systems are *separable*

if one is describable w / o reference to the other
 ○ If the state-vector factorizes,

 $\ket{\Psi} = \ket{\psi} \ket{\chi} \ket{\xi} \dots$

…just like when separating coordinates.

Otherwise, they are *non-separable*

 $|\Psi\rangle = \sum_{n} c_{n} |\psi_{n}\rangle |\chi_{n}\rangle |\xi_{n}\rangle \dots = c_{1} |\psi_{1}\rangle |\chi_{1}\rangle |\xi_{1}\rangle \dots + c_{2} |\psi_{2}\rangle |\chi_{2}\rangle |\xi_{2}\rangle \dots$

- ...with no common factors; non-factorizable.
- This, in fact, is the generic (non-special) case.
- When the summand-factors refer to "individual" particles, this is oft-called "entanglement" [E. Schrödinger], which is a ...misnomer.

QUANTIZATION AND COMPOSITENESS

When a system is comprised of sub-systems that otherwise can be identified with "individual" particles
We refer to the sub-systems as 1-particle systems
...and to the composite as an *k*-particle system
The *k*-particle states may be formed by tensor products

$$|\Psi(1,2)\rangle := \sum_{n} c_{n} |\psi_{n}^{(1)}\rangle \otimes |\psi_{n}^{(2)}\rangle \qquad A := A^{(1)} \otimes A^{(2)}$$

 Such that

$$\boldsymbol{A} | \Psi(1,2) \rangle := \sum_{n} c_n \left(\boldsymbol{A}^{(1)} | \psi_n^{(1)} \rangle \right) \otimes \left(\boldsymbol{A}^{(2)} | \psi_n^{(2)} \rangle \right)$$

Solution When the coefficients reduce to $c_n = \delta_{n,n'}$ for some fixed n', the *k*-particle state is factorizable, *i.e.*, separable.

 $\bigcirc \text{We often write} \quad |\psi_1, \psi_2, \dots \rangle \coloneqq |\psi_1\rangle \otimes |\psi_2\rangle \otimes \dots$

EQUATIONS OF MOTION

Time-dependence

 $\frac{\mathrm{d}}{\mathrm{d}t} |\Psi\rangle \coloneqq \lim_{\epsilon \to 0} \frac{|\Psi(t+\epsilon)\rangle - |\Psi(t)\rangle}{\epsilon} = \lim_{\epsilon \to 0} \frac{e^{-i\epsilon H/\hbar} |\Psi(t)\rangle - |\Psi(t)\rangle}{\epsilon}$ $= \lim_{\epsilon \to 0} \frac{[1 - i\epsilon H/\hbar + \dots] |\Psi(t)\rangle - |\Psi(t)\rangle}{\epsilon} = \frac{1}{i\hbar} H |\Psi(t)\rangle$

Therefore, the Schrödinger equation

$$i\hbar \frac{\mathrm{d}}{\mathrm{d}t} |\Psi(t)\rangle = H |\Psi(t)\rangle$$

is a consequence of space-time geometry, mathematical consistency and the axioms of quantum mechanics.

For any state operator

$$i\hbar \frac{\mathrm{d}}{\mathrm{d}t}\widehat{\rho} = [H,\widehat{\rho}]$$

EQUATIONS OF MOTION

Physics deals with observables \odot ...and their expectation values (comp. w/experiments) $\langle \boldsymbol{R} \rangle(t) := \operatorname{Tr}[\widehat{\boldsymbol{\rho}} \boldsymbol{R}] = \operatorname{Tr}[|\Psi(t)\rangle \langle \Psi(t)|\boldsymbol{R}]$ $= \left(\langle \Psi(t_0) | U^{\dagger}(t,t_0) \rangle R \left(U(t,t_0) | \Psi(t_0) \rangle \right) \quad U(t,t_0) \coloneqq e^{i(t-t_0)H/\hbar} \right)$ $= \langle \Psi(t_0) | U^{\dagger}(t,t_0) R U(t,t_0) | \Psi(t_0) \rangle$ $:= \mathbf{R}_{H}(t)$ ODefine the Heisenberg picture: $\boldsymbol{R}_{H}(t) := \boldsymbol{U}^{\dagger}(t, t_{0}) \boldsymbol{R} \boldsymbol{U}(t, t_{0}) \qquad |\Psi\rangle_{H} := |\Psi(t_{0})\rangle$ © Refer to the initial picture as the Schrödinger picture.

EQUATIONS OF MOTION

$$\boldsymbol{U}(t,t_0) := e^{i(t-t_0)H/\hbar}$$

In the Heisenberg picture:

 $\boldsymbol{R}_{H}(t) \coloneqq \boldsymbol{U}^{\dagger}(t,t_{0})\boldsymbol{R}\boldsymbol{U}(t,t_{0}) \qquad |\Psi\rangle_{H} \coloneqq |\Psi(t_{0})\rangle$

O Then,

$$\frac{\mathrm{d}}{\mathrm{d}t}R_{H}(t) = \left(\frac{\partial U^{\dagger}}{\partial t}\right)RU + U^{\dagger}\left(\frac{\partial R}{\partial t}\right)U + U^{\dagger}R\left(\frac{\partial U}{\partial t}\right)$$

where

 $\frac{\partial U}{\partial t} = \frac{\partial}{\partial t} e^{i(t-t_0)H/\hbar} = \frac{i}{\hbar} H e^{i(t-t_0)H/\hbar} = \frac{i}{\hbar} H U(t,t_0) \qquad \frac{\partial U^{\dagger}}{\partial t} = -\frac{i}{\hbar} U^{\dagger}(t,t_0) H^{\dagger}$

SO

$$\frac{\mathrm{d}}{\mathrm{d}t}R_{H}(t) = \left(\frac{1}{i\hbar}U^{\dagger}H\right)RU + U^{\dagger}R\left(\frac{i}{\hbar}HU\right) + U^{\dagger}\left(\frac{\partial R}{\partial t}\right)U$$

$$\frac{\mathrm{d}}{\mathrm{d}t}\boldsymbol{R}_{H}(t) = \frac{1}{i\hbar}\boldsymbol{U}^{\dagger}[\boldsymbol{H},\boldsymbol{R}]\boldsymbol{U} + i\hbar\boldsymbol{U}^{\dagger}\left(\frac{\partial\boldsymbol{R}}{\partial t}\right)\boldsymbol{U} \quad \text{equation}$$

Heisenberg equation of motion

EQUATIONS OF MOTION

 $Solve Easy to show: \langle R \rangle(t) = \langle \Psi(t) | R | \Psi(t) \rangle = \langle \Psi(t_0) | R_H | \Psi(t_0) \rangle$ Solve Then,

$$\frac{\mathrm{d}\langle R_{s}\rangle}{\mathrm{d}t} = \left\langle \frac{\mathrm{d}R_{s}}{\mathrm{d}t} \right\rangle = \mathrm{Tr} \left[\widehat{\rho}_{s}(t) \frac{\partial R_{s}}{\partial t} - \frac{1}{i\hbar} \widehat{\rho}_{s}(t) \left[H, R_{s}\right] \right] \qquad \text{Schrödinger} \\ = \mathrm{Tr} \left[\widehat{\rho}_{H}(t_{0}) \left(\frac{\partial R}{\partial t} \right)_{H} - \frac{1}{i\hbar} \widehat{\rho}_{H}(t_{0}) \left[H, R_{H}\right] \right] \qquad \text{Heisenberg} \\ \text{picture} \end{cases}$$

where, in general

$$\boldsymbol{A}_{H} := \boldsymbol{U}^{\dagger}(t,t_{0})\boldsymbol{A}_{S}\boldsymbol{U}(t,t_{0})$$

Caution:

$$\left(\frac{\partial R}{\partial t}\right)_{H} = U^{\dagger}(t,t_{0})\left(\frac{\partial R_{S}}{\partial t}\right)U(t,t_{0}) \neq \left(\frac{\partial R_{H}}{\partial t}\right)$$

Toggle freely between the two pictures
equation by equation; not in the middle of an equation!

CONSERVATION LAWS

For any observable and any transformation

$$R \rightarrow R' = U(s)RU^{\dagger}(s) = U(s)RU^{-1}(s)$$

$$R' = R \Rightarrow U(s)RU^{-1}(s) = R \Rightarrow U(s)R = RU(s)$$

$$\begin{bmatrix} U(s), R \end{bmatrix} = 0 \\ \downarrow \\ U(s) = e^{isK} \Rightarrow [K, R] = 0 \end{bmatrix}$$
In particular, when $R = H$

(the Hamiltonian is invariant w.r.t. a transformation)

$$[H, U(s)] = 0 \quad \Leftrightarrow \quad [H, K] = 0$$
$$\frac{d\langle K \rangle}{dt} = \left\langle \frac{dK}{dt} \right\rangle = \operatorname{Tr} \left[\widehat{\rho}(t) \frac{\partial K}{\partial t} - \frac{1}{i\hbar} \widehat{\rho}(t) \left[H, K\right] \right] \qquad \frac{\partial K}{\partial t} = 0 = [H, K]$$
$$\Rightarrow \frac{d\langle K \rangle}{dt} = 0$$
$$\frac{d\langle K \rangle}{dt} = 0$$
$$\frac{d\langle K \rangle}{dt} = 0$$

CONSERVATION LAWS

So, *if* the generator of a transformation

- (a) does not explicitly depend on time
- (b) commutes with the total Hamiltonian
- *then* it represents a conserved quantity

Constant of motion

Symmetry*	Implemented by	Generator, K	Conserved Quantity
Time-translation	$e^{+i\tau H/\hbar}$	Н	Total energy
Space-translation	e ^{−ia·P/ħ}	P_{α}	Linear momentum
Space-rotation	$e^{-i\theta\cdot J/\hbar}$	J_{α}	Angular momentum
* A transformation generated by <i>K</i> is a symmetry if $\frac{\partial K}{\partial t} = 0 = [H, K]$			
$[H, H] = 0; E$ -conservation then needs only $\frac{\partial H}{\partial t} = 0$			

○ 1. $[H, H] \equiv 0$; *E*-conservation then needs only $\frac{\partial H}{\partial t} = 0$ ○ 2. Exceptionally, cancellation in Tr[...] $\frac{d\langle f(\kappa) \rangle}{dt} = \operatorname{Tr} \left[\widehat{\rho}(t) \frac{\partial \kappa}{\partial t} f'(\kappa) - \frac{1}{i\hbar} \widehat{\rho}(t) \left[H, f(\kappa) \right] \right]$

CONSERVATION LAWS

 \bigcirc Stationary states (when $\partial_t H = 0$)

 $H |\Psi(t)\rangle = E_n |\Psi(t)\rangle \Rightarrow i\hbar \frac{d}{dt} |\Psi(t)\rangle = E_n |\Psi(t)\rangle$ $\Rightarrow |\Psi(t)\rangle = e^{-iE_nt/\hbar} |E_n\rangle$ $H |E_n\rangle = E_n |E_n\rangle$ stationary state *H*-eigenstate $\langle \boldsymbol{R} \rangle(t) = \langle E_n | e^{+itE_n/\hbar} \boldsymbol{R} e^{-itE_n/\hbar} | E_n \rangle = \langle E_n | \boldsymbol{R} | E_n \rangle$ Then $\frac{\mathrm{d}\langle \boldsymbol{R} \rangle_{\mathrm{stat.}}}{1} = \frac{\mathrm{d}\langle \boldsymbol{E}_n | \boldsymbol{R} | \boldsymbol{E}_n \rangle}{1} = 0$ Stationary state expectation values of all observables are constant in time dt $R e^{-itE_n/\hbar} |E_n\rangle = e^{-itE_n/\hbar} R |E_n\rangle$ even if $R = f(\frac{d}{dt})$ $f\left(\frac{\mathrm{d}}{\mathrm{d}t}\right)\left(e^{-iE_{n}t/\hbar}\left|E_{n}\right\rangle\right) = f\left(\frac{E_{n}}{i\hbar}\right)\left(e^{-iE_{n}t/\hbar}\left|E_{n}\right\rangle\right) = \left(e^{-iE_{n}t/\hbar}f\left(\frac{1}{i\hbar}H\right)\left|E_{n}\right\rangle\right)$ $\frac{\partial f(H)}{\partial t} = \frac{\partial H}{\partial t} f'(H) = 0 \quad \text{since} \ \frac{\partial H}{\partial t} = 0$ Finally,

MISCELLANEA

but

 $Signs: e^{-ia \cdot P} \Psi(\mathbf{r}, t) := \langle \mathbf{r} | e^{-ia \cdot P} | \Psi(t) \rangle$ $e^{-i\theta \cdot (L+S)} \Psi(\mathbf{r}, t) := \langle \mathbf{r} | e^{-i\theta \cdot (L+S)} | \Psi(t) \rangle$

 $e^{+i\tau H}\Psi(\mathbf{r},t) := \langle \mathbf{r} | e^{-i\tau H} | \Psi(t) \rangle$

Recall the possible "exceptional" cancellation: $0 = \operatorname{Tr} \left[\widehat{\rho}(t) \left(\underbrace{\frac{\partial K}{\partial t} f'(K) - \frac{1}{i\hbar} [H, f(K)]}_{\text{needs to cancel only within the projection(s)}} \right]$ state-dependent projection(s)

As this <u>may</u> be true, the "<u>quantum conservation theorem</u>"

$$\frac{d\langle K \rangle}{dt} = 0 \quad \stackrel{\Leftrightarrow}{\leftarrow} \quad \frac{\partial K}{\partial t} = 0 = [H, K]$$
State-dependent
(as is E. Noether's, in classical physics)

Quantum Mechanics I

Now, go forth and Calculate!!

Tristan Hübsch

Department of Physics and Astronomy, Howard University, Washington DC <u>http://physics1.howard.edu/~thubsch/</u>