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Quantum Dynamics

UANTIZATION AND COMPOSITENESS

. Ambiguous: classically AB = BA, quantum-ly AB = BA

' @ Normal ordering: a pre-agreed ordering
@ Cannot remove all issues [LEB, p. 88, last 4 lines]

. "C On general grounds, quantum — classical

'f' . 1That is, classical = [li—0]-special case of quantum
s 7/~ © Subtle: details: Ch.14 & 15
Wz 1C1ass1ca1 should not be able to “cover” all of quantum

, ¢ Approach: build quantum physics from ground up

@ such that it recovers classical physics in the correct “limit”
== ¢ N.Bohr’s “correspondence principle”

: ¢ Not sufficient: just as f(x) is not determined from f(0) alone
@ There exist “purely” quantum phenomena

¢ Real space (of positions) vs. Hilbert space (of states)
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Quantum Dynamics

UANTIZATION AND COMPOSITENESS

Must start somewhere
..might as well from classical

- & Assign A— A=w(A) according to any fixed ordering scheme

- © Compute the anomaly, Aag:=[w(A), w(B)]-w({A,B}rs)
. o If A, B generate a gauge symmetry (e.g., EM), Aap must vanish

¢ It A, B generate a non-gauge symmetry, Asp must be conserved

@ Useful in phase-transition: “anomaly matching conditions”

@ This assumes a classical formulation is known, for comparison
/< In general, classical observables f(p,q) over phase space

@ But, [Qq, Pg]=i1104s1 = Q. and Pg cannot both be “just” variables

© Some half of them must act as derivatives w.r.t. the other half
e Ch01ce of “polarization” = Geometric Quantization program

-ﬁ"‘% Other quantization frameworks

v ¢ ..must work in all known/understood applications
!._‘* ¢ ...and work (better) where canonical quantization fails
W e

N
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ieQuantum Dynamics

. © System = composite, comprised of sub-systems  Sub-systems

. © Sub-systems are separable o ?gﬁfﬁfeg

~if one is describable w /o reference to the other oy o qualites
© If the state-vector factorizes,

¥) = 19) X 18) -

¥ 0 .. just like when separating coordinates.

©

“© Otherwise, they are non-separable

[¥) = 3 _cnln) [Xn) ) - = 1 |$n) |22} 161) - - + e2 [§2) [x2) 182) - -

@ ...with no common factors; non-factorizable.
¢ This, in fact, is the generic (non-special) case.

¢ When the summand-factors refer to “individual” particles, this is
oft-called “entanglement” [E. Schrédinger], which is a ...misnomer.
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Quantum Dynamics

UANTIZATION AND COMPOSITENESS

B When a system is comprised of sub-systems that
| otherw1se can be identified with * md1v1dual” particles

AN ZCn( Upi)) @ (A2|pi))

0 When the coefﬁc1ents reduce to ¢, = O, for some fixed 1,
the k-particle state is factorizable, i.e., separable.

!_m uWe often write |1, ¢,...) = [1y) @ [) @
N ;
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iQuantum Dynamics

" i QUATIONS OF MOTION

= Time-dependence

d ¥) := lim [¥(t+e)) = [¥(8) _ 4 e CH/M ¥ (1)) — [¥(2))
dt e—0 € e—0 €
_ }:12% N —ieH/h+ . ..6] ¥ (t)) — [¥(t)) _ %H ¥ (b))

. d
ins; [¥(6) = H¥(8)

P8 is a consequence of space-time geometry, mathematical

“"'!F ;onsistency and the axioms of quantum mechanics.
W oFor any N P
~ % state operator ih3:P = [H. ]




...and their expectation values (comp. w/experiments)
(R)(t) == Te[@R] =T [[¥(t)) (¥(t)| R
= ((¥(t)|U* (£, 1)) R (U (L 10)[¥ (1))  U(tto) = 10/
= (¥(ko)| U (t, to) RU(t, ko) [¥ (to))

—_— ——
= Ry(t)

& Define the Heisenberg picture:
Ru(t) == UT(t ) RU(L 1) [¥) = [¥(k))

. ﬁRefer to the initial picture as the Schrédinger picture.




iQuantum Dynamics

.‘q,: .QUATIDNS OF MaTION U(t, to) = pl(t—to)H /T

B In the Heisenberg picture:

(t) = (&a—”f) RU + u*(&—ﬂ) U+ u*n(%)

= (#U'H)RU+U'R(§HU) + u*(%—’?) U

oR '
14 ——lil Heisenber
#YU'|H, RIU +ihU ( ot )U equation of motiog

8



Q 3 .
iQuantum Dynamics

" i QUATIONS OF MOTION

U Easy to show:  (R)(t) = (¥(t)|R|¥(t)) = (¥(to)|Rul¥(to))

- d(Rs)  /dRs\ (., 0Rs 1_
e < g7 > = Tr [ps(t) 5 ihps(i') |H, RS]} Schro};iil(:r;%fé‘
R IR\ 1. |
= Tr {pH(to) (J)H — EpH(tO) H, FRH]] Heisenberg

picture

. - ~_ . aﬂ o + ' BRS a’RH

P=—= (o ) = V') (G0 Jueto) # (557)

« 0 Toggle freely between the two pictures

© equation by equation; not in the middle of an equation!



R— R =U(s)RU(s) = U(s)RU(s)
RR\=R = UGB)RU(s)=R = U(s)R=RU(s)
\U(s),R] =0
Since U(s)=e** = I[K,R]=0
g iu In particular, when R = H

$4.74 = ¢ (the Hamiltonian is invariant w.r.t. a transformation)

H,U(s)]=0 & |H K| =0 Bv_K:

= (%) =T[p0 5 - pa0 K] | o K

[44

() = [ S0 - 5800 1. £ (K]
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i @Quantum Dynamics

S EONSERVATION LAWS

e So, if the generator of a transformation

| ¢ (a) does not explicitly depend on time
| © (b) commutes with the total Hamiltonian
| "r © then it represents a conserved quantity

Constant of motion

Symmetry® Implemented by Generator, K Conserved Quantity

Time-translation gHiTH /N H Total energy
Space-translation g~ ia-P/n P, Linear momentum
¥/ Space-rotation g~ 10 J/M Ju Angular momentum
ok El * A transformation generated by K is a symmetry if aa—’t( =0=|H, K]
7y v
@0 1. [H,H]=0; E-conservation then needs only a—ﬁ: =0

% 2 2. Exceptionally, AR [T ek
% cancellation in Tr]...] <fét LR [p_(_t)_ =}

> %‘ |

g
T




V) = E¥(E) = i ¥(0) = ¥ (D)
¥(t)) = e Et/M|E,) H |En) = En |En)

stationary state H-eigenstate

(R)(t) = (Enle™5/" R En/ME,) = (Ey|R|En)

d(R)sw. d(Ex|R|Ex)
dt dt

b )2 Re /M |E,) = ¢ /MR E,)  evenif R = f(§)
A 5§ (B R ) = FE) (B B ) = (B F ) 1B )

S
5 6 of(H) oH B , oH
el ve (H) =0 smceg—o

Stationary state expectation values of
all observables are constant in time

=0

¢ Finally,
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U Signs: e PY(n,t) = L\/W
! e—i@-(L—FS . #@-FS \Y

T (1, £) = (rldDH (1)

1Reca11 the possible “exceptional” cancellation:

oK 1
o= [a0)( G 1000~ glH. 1)
4 /7 < state-dependent
projection(s) needs to cancel only within the projection(s)

-0 As this may be true, the “quantum conservation theorem”

&+ _
dt ot Not “if and only 1f”
state-dependent (as is E. Noether’s, in classical physics)

13



Quantum Mechanics |

Now, go forth and
calculate!!

Tristan Hubsch

Department of Physics and Astronomy, Howard University, Washington DC
http://physicsl.howard.edu/~thubsch/




