Quantum Mechanics I

Quantum Dynamics

Quantization \& Compositeness

Equations of Motion Conservation Laws

Tristan Hübsch

Department of Physics and Astronomy, Howard University, Washington-DC http://physicsl.howard.edu/~thubsch/.

Quantum Dynamics

母பANTIZATIロN AND CロMPロSITENESS

Q Frequent approach：＂quantizing a classical model＂
© Ambiguous：classically $A B=B A$ ，quantum－ly $A B \neq B A$
Q Normal ordering：a pre－agreed ordering
Q Cannot remove all issues［LEB，p．88，last 4 lines］
On general grounds，quantum \rightarrow classical
Q That is，classical $=[\hbar \rightarrow 0]$－special case of quantum
© Subtle：details：Ch． 14 \＆ 15
Q Classical should not be able to＂cover＂all of quantum
Q Approach：build quantum physics from ground up
Q such that it recovers classical physics in the correct＂limit＂
＠N．Bohr＇s＂correspondence principle＂
Q Not sufficient：just as $f(x)$ is not determined from $f(0)$ alone
Q There exist＂purely＂quantum phenomena
＠Real space（of positions）vs．Hilbert space（of states）

Quantum Dynamics

母UANTIZATIロN AND CロMPロSITENESS

－Canonical quantization
Must start somewhere
Q Assign $A \rightarrow A=\omega(A)$ according to any fixed ordering scheme
© Compute the anomaly，$\Delta_{A B}:=[\omega(A), \omega(B)]-\omega\left(\{A, B\}_{\mathrm{PB}}\right)$
－If A, B generate a gauge symmetry（e．g．，EM），$\Delta_{A B}$ must vanish
© If A, B generate a non－gauge symmetry，$\Delta_{A B}$ must be conserved ＠Useful in phase－transition：＂anomaly matching conditions＂
Q This assumes a classical formulation is known，for comparison
Q In general，classical observables $f(p, q)$ over phase space © But，$\left[Q_{\alpha}, P_{\beta}\right]=i \hbar \delta_{\alpha \beta} \mathbb{1} \Rightarrow Q_{\alpha}$ and P_{β} cannot both be＂just＂variables
＠Some half of them must act as derivatives w．r．t．the other half
© Choice of＂polarization＂\Rightarrow Geometric Quantization program
Other quantization frameworks
Q ．．．must work in all known／understood applications
Q ．．．and work（better）where canonical quantization fails

Quantum Dynamics

母UANTIZATIロN AND CロMPロSITENESS

Q Everything is composite
Q System＝composite，comprised of sub－systems
－Sub－systems are separable
if one is describable w／o reference to the other

Sub－systems may refer to particles， or to qualites

Q If the state－vector factorizes，

$$
|\Psi\rangle=|\psi\rangle|\chi\rangle|\xi\rangle \ldots
$$

๑ ．．．just like when separating coordinates．
Otherwise，they are non－separable

$$
|\Psi\rangle=\sum_{n} c_{n}\left|\psi_{n}\right\rangle\left|\chi_{n}\right\rangle\left|\xi_{n}\right\rangle \ldots=c_{1}\left|\psi_{1}\right\rangle\left|\chi_{1}\right\rangle\left|\xi_{1}\right\rangle \ldots+c_{2}\left|\psi_{2}\right\rangle\left|\chi_{2}\right\rangle\left|\xi_{2}\right\rangle \ldots
$$

© ．．．with no common factors；non－factorizable．
Q This，in fact，is the generic（non－special）case．
－When the summand－factors refer to＂individual＂particles，this is oft－called＂entanglement＂［E．Schrödinger］，which is a ．．．misnomer．

Quantum Dynamics

QபANTIZATIロN AND CロMPロSITENESS

Q When a system is comprised of sub－systems that otherwise can be identified with＂individual＂particles
Q We refer to the sub－systems as 1－particle systems
．．．and to the composite as an k－particle system
The k－particle states may be formed by tensor products

$$
|\Psi(1,2)\rangle:=\sum_{n} c_{n}\left|\psi_{n}^{(1)}\right\rangle \otimes\left|\psi_{n}^{(2)}\right\rangle \quad A:=A^{(1)} \otimes A^{(2)}
$$

such that

$$
A|\Psi(1,2)\rangle:=\sum_{n} c_{n}\left(A^{(1)}\left|\psi_{n}^{(1)}\right\rangle\right) \otimes\left(A^{(2)}\left|\psi_{n}^{(2)}\right\rangle\right)
$$

Q When the coefficients reduce to $c_{n}=\delta_{n, n^{\prime}}$ for some fixed n^{\prime} ， the k－particle state is factorizable，i．e．，separable．

We often write $\quad\left|\psi_{1}, \psi_{2}, \ldots\right\rangle:=\left|\psi_{1}\right\rangle \otimes\left|\psi_{2}\right\rangle \otimes \ldots$

Quantum Dynamics

EqUATIUNS af Mation

Q Time-dependence

$$
\begin{aligned}
\frac{\mathrm{d}}{\mathrm{~d} t}|\Psi\rangle & :=\lim _{\epsilon \rightarrow 0} \frac{|\Psi(t+\epsilon)\rangle-|\Psi(t)\rangle}{\epsilon}=\lim _{\epsilon \rightarrow 0} \frac{e^{-i \epsilon H / \hbar}|\Psi(t)\rangle-|\Psi(t)\rangle}{\epsilon} \\
& =\lim _{\epsilon \rightarrow 0} \frac{[\mathbb{1}-i \epsilon H / \hbar+\ldots]|\Psi(t)\rangle-|\Psi(t)\rangle}{\epsilon}=\frac{1}{i \hbar} H|\Psi(t)\rangle
\end{aligned}
$$

Therefore, the Schrödinger equation

$$
i \hbar \frac{\mathrm{~d}}{\mathrm{~d} t}|\Psi(t)\rangle=H|\Psi(t)\rangle
$$

is a consequence of space-time geometry, mathematical consistency and the axioms of quantum mechanics.
QFor any state operator

$$
i \hbar \frac{\mathrm{~d}}{\mathrm{~d} t} \widehat{\rho}=[H, \widehat{\rho}]
$$

Quantum Dynamics

EQUATIロNS ロF MaTIロN

Q Physics deals with observables
$Q . .$. and their expectation values（comp．w／experiments）

$$
\begin{aligned}
\langle R\rangle(t) & :=\operatorname{Tr}[\widehat{\boldsymbol{\rho}} R]=\operatorname{Tr}[|\Psi(t)\rangle\langle\Psi(t)| R] \\
& =\left(\left\langle\Psi\left(t_{0}\right)\right| U^{\dagger}\left(t, t_{0}\right)\right) R\left(U\left(t, t_{0}\right)\left|\Psi\left(t_{0}\right)\right\rangle\right) \quad U\left(t, t_{0}\right):=e^{i\left(t-t_{0}\right) H / \hbar} \\
& =\left\langle\Psi\left(t_{0}\right)\right| \underbrace{U^{\dagger}\left(t, t_{0}\right) R U\left(t, t_{0}\right)}_{:=R_{H}(t)}\left|\Psi\left(t_{0}\right)\right\rangle
\end{aligned}
$$

Define the Heisenberg picture：

$$
R_{H}(t):=U^{\dagger}\left(t, t_{0}\right) R U\left(t, t_{0}\right) \quad|\Psi\rangle_{H}:=\left|\Psi\left(t_{0}\right)\right\rangle
$$

Refer to the initial picture as the Schrödinger picture．

Quantum Dynamics

Equations af Mation

$$
\mathcal{U}\left(t, t_{0}\right):=e^{i\left(t-t_{0}\right) H / \hbar}
$$

Q In the Heisenberg picture:

$$
R_{H}(t):=U^{\dagger}\left(t, t_{0}\right) R U\left(t, t_{0}\right) \quad|\Psi\rangle_{H}:=\left|\Psi\left(t_{0}\right)\right\rangle
$$

Then,

$$
\frac{\mathrm{d}}{\mathrm{~d} t} R_{H}(t)=\left(\frac{\partial U^{\dagger}}{\partial t}\right) R U+U^{\dagger}\left(\frac{\partial R}{\partial t}\right) U+U^{\dagger} R\left(\frac{\partial U}{\partial t}\right)
$$

where

$$
\frac{\partial U}{\partial t}=\frac{\partial}{\partial t} e^{i\left(t-t_{0}\right) H / \hbar}=\frac{i}{\hbar} H e^{i\left(t-t_{0}\right) H / \hbar}=\frac{i}{\hbar} H U\left(t, t_{0}\right) \quad \frac{\partial U^{\dagger}}{\partial t}=-\frac{i}{\hbar} U^{\dagger}\left(t, t_{0}\right) H^{\dagger}
$$

SO

$$
\begin{aligned}
& \frac{\mathrm{d}}{\mathrm{~d} t} R_{H}(t)=\left(\frac{1}{i \hbar} U^{\dagger} H\right) R U+U^{\dagger} R\left(\frac{i}{\hbar} H U\right)+U^{\dagger}\left(\frac{\partial R}{\partial t}\right) U \\
& \frac{\mathrm{~d}}{\mathrm{~d} t} R_{H}(t)=\frac{1}{i \hbar} U^{\dagger}[H, R] U+i \hbar U^{\dagger}\left(\frac{\partial R}{\partial t}\right) U \quad \begin{array}{l}
\text { Heisenberg } \\
\text { equation of motion }
\end{array}
\end{aligned}
$$

Quantum Dynamics

EqUATIONS af Mation

Q Easy to show:

$$
\langle R\rangle(t)=\langle\Psi(t)| R|\Psi(t)\rangle=\left\langle\Psi\left(t_{0}\right)\right| R_{H}\left|\Psi\left(t_{0}\right)\right\rangle
$$

© Then,

$$
\begin{aligned}
\frac{\mathrm{d}\left\langle R_{S}\right\rangle}{\mathrm{d} t}=\left\langle\frac{\mathrm{d} \boldsymbol{R}_{S}}{\mathrm{~d} t}\right\rangle & =\operatorname{Tr}\left[\widehat{\boldsymbol{\rho}}_{S}(t) \frac{\partial R_{S}}{\partial t}-\frac{1}{i \hbar} \widehat{\boldsymbol{\rho}}_{S}(t)\left[H, \boldsymbol{R}_{S}\right]\right] \\
& =\operatorname{Tr}\left[\widehat{\boldsymbol{\rho}}_{H}\left(t_{0}\right)\left(\frac{\partial R}{\partial t}\right)_{H}-\frac{1}{i \hbar} \widehat{\boldsymbol{\rho}}_{H}\left(t_{0}\right)\left[H, R_{H}\right]\right]
\end{aligned}
$$

Schrödinger picture Heisenberg picture
where, in general

$$
A_{H}:=U^{\dagger}\left(t, t_{0}\right) A_{S} U\left(t, t_{0}\right)
$$

Caution:

$$
\left(\frac{\partial R}{\partial t}\right)_{H}=U^{\dagger}\left(t, t_{0}\right)\left(\frac{\partial R_{S}}{\partial t}\right) U\left(t, t_{0}\right) \neq\left(\frac{\partial R_{H}}{\partial t}\right)
$$

Toggle freely between the two pictures
Q equation by equation; not in the middle of an equation!

Quantum Dynamics

CONSERVATION LAWS

Q For any observable and any transformation

$$
\begin{aligned}
& R \rightarrow R^{\prime}=U(s) R U^{\dagger}(s)=U(s) R U^{-1}(s) \\
& R^{\prime}=R \Rightarrow U(s) R U^{-1}(s)=R \quad \Rightarrow U(s) R=R U(s) \\
& \quad \begin{array}{ll}
& {[U(s), R]=0} \\
U(s)=e^{i s K} & \Rightarrow \quad[K, R]=0
\end{array}
\end{aligned}
$$

Since
In particular, when $R=H$
(the Hamiltonian is invariant w.r.t. a transformation)

$$
\begin{array}{cc}
{[H, U(s)]=0 \quad \Leftrightarrow \quad[H, K]=0} & \frac{\partial K}{\partial t}=0=[H, K] \\
\frac{\mathrm{d}\langle K\rangle}{\mathrm{d} t}=\left\langle\frac{\mathrm{d} K}{\mathrm{~d} t}\right\rangle=\operatorname{Tr}\left[\widehat{\boldsymbol{\rho}}(t) \frac{\partial K}{\partial t}-\frac{1}{i \hbar} \widehat{\boldsymbol{\rho}}(t)[H, K]\right] \quad \begin{array}{c}
\Rightarrow \frac{\mathrm{d}\langle K\rangle}{\mathrm{d} t}=0
\end{array} \\
\frac{\mathrm{~d}\langle f(K)\rangle}{\mathrm{d} t}=\left\langle\frac{\mathrm{d} f(K)}{\mathrm{d} t}\right\rangle=\operatorname{Tr}\left[\widehat{\boldsymbol{\rho}}(t) \frac{\partial K}{\partial t} f^{\prime}(K)-\frac{1}{i \hbar} \widehat{\boldsymbol{\rho}}(t)[H, f(K)]\right]
\end{array}
$$

Quantum Dynamics

CロNSERVATIロN LAWS

So, if the generator of a transformation
Q (a) does not explicitly depend on time
Q (b) commutes with the total Hamiltonian
Q then it represents a conserved quantity
Constant of motion
Symmetry* Implemented by Generator, K Conserved Quantity

Time-translation	$e^{+i \tau H / \hbar}$	H	Total energy
Space-translation	$e^{-i a \cdot P / \hbar}$	P_{α}	Linear momentum
Space-rotation	$e^{-i \theta \cdot J / \hbar}$	J_{α}	Angular momentum

*A transformation generated by K is a symmetry if $\frac{\partial K}{\partial t}=0=[H, K]$

1. $[H, H] \equiv 0 ; E$-conservation then needs only $\quad \frac{\partial H}{\partial t}=0$
2. Exceptionally,

Quantum Dynamics

CロNSERVATIロN LAWS

Q Stationary states (when $\partial_{t} H=0$)

$$
\begin{array}{cc}
H|\Psi(t)\rangle=E_{n}|\Psi(t)\rangle \Rightarrow i \hbar \frac{\mathrm{~d}}{\mathrm{~d} t}|\Psi(t)\rangle=E_{n}|\Psi(t)\rangle \\
\Rightarrow \begin{array}{c}
|\Psi(t)\rangle=e^{-i E_{n} t / \hbar}\left|E_{n}\right\rangle \\
\text { stationary state }
\end{array} & \begin{array}{l}
H\left|E_{n}\right\rangle=E_{n}\left|E_{n}\right\rangle \\
H \text {-eigenstate }
\end{array} \\
\hline
\end{array}
$$

Then

$$
\begin{aligned}
& \langle R\rangle(t)=\left\langle E_{n}\right| e^{+i t E_{n} / \hbar} \underbrace{R e^{-i t E_{n} / \hbar}}\left|E_{n}\right\rangle=\left\langle E_{n}\right| R\left|E_{n}\right\rangle \\
& \frac{\mathrm{d}\langle R\rangle_{\text {stat. }}}{\mathrm{d} t}=\frac{\mathrm{d}\left\langle E_{n}\right| R\left|E_{n}\right\rangle}{\mathrm{d} t}=0 \quad \begin{array}{l}
\begin{array}{c}
\text { Stationary state expectation values of } \\
\text { all observables are constant in time }
\end{array}
\end{array}
\end{aligned}
$$

$R e^{-i t E_{n} / \hbar}\left|E_{n}\right\rangle=e^{-i t E_{n} / \hbar} R\left|E_{n}\right\rangle \quad$ even if $R=f\left(\frac{\mathrm{~d}}{\mathrm{~d} t}\right)$

$$
f\left(\frac{\mathrm{~d}}{\mathrm{~d} t}\right)\left(e^{-i E_{n} t / / \hbar}\left|E_{n}\right\rangle\right)=f\left(\frac{E_{n}}{i \hbar}\right)\left(e^{-i E_{n} t / \hbar}\left|E_{n}\right\rangle\right)=\left(e^{-i E_{n} t / / \hbar} f\left(\frac{1}{i \hbar} H\right)\left|E_{n}\right\rangle\right)
$$

Q Finally,

$$
\frac{\partial f(H)}{\partial t}=\frac{\partial H}{\partial t} f^{\prime}(H)=0 \quad \text { since } \frac{\partial H}{\partial t}=0
$$

Quantum Dynamics

MISCELLANEA

Q Signs: $\quad e^{-i a \cdot P} \Psi(r, t):=\langle r| e^{-i a} \cdot P|\Psi(t)\rangle$

$$
e^{-i \theta \cdot(L+S)} \Psi(r, t):=\langle r \underbrace{e^{-i \theta \cdot(L+S)}} \mid \Psi(t)\rangle
$$

but

$$
e^{+i \tau H} \Psi(\boldsymbol{r}, t):=\langle\boldsymbol{r}| e^{\oplus i \tau H}\langle\Psi(t)\rangle
$$

Recall the possible "exceptional" cancellation:

$$
0=\operatorname{Tr}[\widehat{\boldsymbol{\rho}}(t)(\underbrace{\frac{\partial K}{\partial t} f^{\prime}(K)-\frac{1}{i \hbar}[H, f(K)}])]
$$

state-dependent projection(s) needs to cancel only within the projection(s)

Q As this may be true, the "quantum conservation theorem"

$$
\frac{\mathrm{d}\langle K\rangle}{\mathrm{d} t}=0 \stackrel{\nLeftarrow}{\Leftarrow} \frac{\partial K}{\partial t}=0=[H, K]
$$

Not "if and only if"
state-dependent
(as is E. Noether's, in classical physics)

