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Linear Vector Spaces

Linear Self-Adjoint Operators
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The definition has a pre-requisite
Ground field is a collection of numbers (!,",#,…) for which:

addition gives a group: !+", !+0=!, !+(–!)=0, (!+")+#=!+("+#)
multiplication (!≠0) gives a group: !·", !·1=!, !·(1/!)=1, (!·")·#=!·("·#)
multiplication distributes accross addition: !·("+#) = !·" + !·#

For Quantum Mechanics, the ground field will be ℂ
A ℂ-Linear vector space V is a collection of objects vi,

such that all ℂ-linear combinations  %i !i vi are also in V.
E.g., solutions of linear differential equations form a vector space.

E.g., Maxwell’s EM equations; superpositions of the E- and B-fields

Linearly independent: !1 v1 + !2 v2 = 0 only if !1 = 0 = !2

Basis: the smallest number of vectors {v1, v2,…, vd} such that
v = %1≤ i ≤d !i vi for each v ∈ V;  d = dim(V).
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Example: V = all linear combinations of ex, e2x and ex(ex–1)
A basis: {ex, e2x} since !1ex + !2e2x = 0 (for all x) only if !1 = 0 = !2

and c1ex + c2e2x + c3ex(ex–1)
Linear vector spaces may be

Finite: dim(V) < ∞, e.g., 3D real vectors
Discrete: dim(V) = ∞ but V-bases are countable, e.g., guitar string
Continuous: dim(V) = ∞ but V-basis are uncountable,
e.g., all differentiable functions
Also, span(v1, v2, v3) = vector space of all linear combinations of v1, v2, v3

In QM, all three occur, and quite regularly
We will write, formally:

{$n} for a basis of the linear vector space and %n cn $n of a superposition,
regardless whether n is finite, discrete or continuous
Where necessary, remark on any subtleties incurred by this

= (c1–c3)ex + (c2+c3)e2x.
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A scalar product (%,&) is a 2-argument function such that:
a: (%,&) is a complex scalar
b: (&,%) = (%,&)*
c: (%,c1&1+c2&2) = c1(%,&1)+ c2(%,&2)
d: (&,&) ≥ 0, and (&,&) = 0 only if & = 0
Together, (b) and (c) imply (c1%1+c2%2,&) = c1* (%1,&)+ c2* (%2,&)

For discrete (countable) vector spaces,
a vector & is a column-vector with components &i 
(%,&) = (row-%)·(column-&) = ∑i %i* &i 

For continuous (uncountable) vector spaces,
a vector & is a function with “components” &(x) 
(%,&) = ∫dx w(x) %*(x) &(x), where w(x) ≥ 0 is a weight-function

w(x) > 0 , except w(x) = 0 at isolated points

= ·
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Using (d), we define the norm: ‖&‖ , (&,&)½
Two vectors are orthogonal w.r. to a given scalar product

if the scalar product vanishes (%,&) = 0
May also define the angle ∡%,& , cos–1[(%,&)/(‖%‖‖&‖)]
A set of vectors (or a basis) is orthogonal if (&i ,&j) = 0 for i ≠ j 
A set of vectors (or a basis) is orthonormal if (&i ,&j) = 'ij 

The latter case implicitly requires a Dirac delta-symbol

Two standard inequalities:
Schwarz’s inequality: |(%,&)| ≤ ‖%‖‖&‖
Triangle inequality:   ‖(%+&)‖ ≤ ‖%‖+‖&‖
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For each V, there is a dual space of linear functionals on V
A functional assigns to each vector a scalar F[&] ∈ ℂ 
A functional is linear if F[c1&1+c2&2] = c1 F[&1] + c2 F[&2]
Functionals themselves form a vector space, V°, by defining

(C1 F1 + C2 F2)[&] , C1 F1[&] + C2 F2[&] 

Riesz theorem: there is an isomorphism V ↔ V° 
such that X[&] = (%,&).

Clearly, % defines X[…] = (%,…)
In turn, X[…] defines % = ∑i (F[&i])* &i w.r. to any basis {&i}

Dirac notation: & → |&�and X[…] = (%,…) → �%|
Then (%,&) = �%|&�
However, for infinite-dimensional vector spaces,
subtleties may force us to consider rigged Hilbert space triples
where there are more bras than kets
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An operator acts on a vector and produces a vector
Domain = all vectors on which an operator is defined to act
An operator is linear if F (c1&1+c2&2) = c1 (F &1) + c2 (F &2)
A = B means that A & = B & for all & in the common domain

Operator algebra
Sum: (A+B) & = A & + B &
Product: AB & = A °B & = A(B &); A(BC) = (AB)C  but  AB ≠ BA
In a discrete vector space, operators are matrices
Operatorial identities

mean

Action to left:

∂

∂x

x = 1 + x

∂

∂x

∂x ∂x

∂

∂x

x y(x) = 1 y(x) + x

∂

∂x

y(x)

�
hc|A

�
|yi := hc|A |yi 8 hc| , |yi
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The trace: 
is cyclic:
For operators on finite vector spaces, Tr = sum of diagonal elements
For operators on infinite vector spaces, Tr = sum must converge

Adjoint:
Properties:

Exterior product

Self-Adjoint: 

| | i h | | i 8

(cA)† = c

⇤
A

†
c 2 C (A + B)† = A

† + B

† (AB)† = B

†
A

†

�
h |

�
| i h | | i 8 h | | i

hc|A

† |yi := hy|A |ci⇤ 8 hc| , |yi

|yi hc| =
�
|yi hc|

�†
= |ci hy|

is an operator

| i h |
�
| i h |

�

Tr(A) := Â
j

hy
i

|A|y
i

i
Tr(AB · · ·C) = Tr(B · · ·CA) Tr(AB) = Tr(BA)

· · · · · ·

hc|A

† |yi !
= hc|A |yi 8 hc| , |yi

= =
h | | i h | | i

= =

hy|A |ci⇤ !
= hy|A

† |ci
Just like a

Hermitian conjugate
of a matrix
Mij = (Mji)*
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Thm.1: 
Definition: 

Thm.2: If A = A†, then all eigenvalues are real.
Thm.3: If A = A†, then eigenvectors of distinct eigenvalues are 
orthogonal.
Definition: a set of vectors (w/prop.X) is complete, then all 
vectors (w/prop.X) can be written as a linear combination
Formally: 

Indeed:

h | | i h | | i

hy|A |yi = hy|A |yi⇤ ) hy1|A |y2i = hy2|A |y1i⇤h | | i h | |

A |a
n

i = a
n

|a
n

i
eigenvector eigenvalue

| i | i

{|y
i

i} complete ) Â
i

|y
i

i hy
i

| = 1) | i h |

|ci = 1 |ci = Â
i

|y
i

i hy
i

| |cii = Â
i

|y
i

i hy
i

|ci| {z }
:=c

i= Â
i

c

i

|y
i

i c

i

:= hy
i

|ci

The Fourier theorem, generalized

PPP
i

:= |y
i

i hy
i

|
PPP

i

PPP
i

= PPP
i

projectors

no dagger!
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Thm..: If 
then

Caveat: The existence and completeness of eigenvectors 
strongly depends on boundary conditions. [p.18–20]
How so?

Consider  ∂x := ∂/∂x  and know that  e ax  are eigenfunctions: ∂x e ax = a e ax 
Is ∂x self-adjoint?
No: ∫abdx f*(x) [∂x g(x)] = [f*(x)g(x)]a

b   –  ∫abdx [∂x f(x)]* g(x) 
Sign: define Dx := –i∂x 
Boundary terms: functions f(x) and g(x) must be restricted so it vanishes
They define the the domain self-adjointness of Dx 
p.19–20 list four choices, only two of which make Dx self-adjoint

| i h | i

A

† = A A |ni = a

n

|ni , hn|mi = d
nm Â

n

|ni hn| = 1

A = Â
n

a

n

|ni hn| f (A) := Â
n

f (a

n

) |ni hn|



Q
M
I

E(λ2)

Linear Self-Adjoint Operators

Mathematical Prerequisites

11

Thm.4 (spectral): Each self-adjoint operator has a unique 
family of projection operators E(λ), for real λ, such that:

1. If l
1

< l
2

then E(l
1

)E(l
2

) = E(l
2

)E(l
1

) = E(l
1

).

2. If 0 then lim E E .

2. If e > 0 then lime!0

E(l+e) |yi = E(l) |yi.

! |
5.

R +•
�• dE(l) l = A. — reconstructs A

E (λ) projects
onto states with
eigenvalue ≤ λ

λ

λ1
E(λ1)

λ

λ1 E(λ1)

λ2

λ

λ1
dE(λ1)

!
3. liml!�• E(l) |yi = 0.l!�• | i
4. liml!+• E(l) |yi = |yi.R +•
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Thm.5: If A and B are self-adjoint operators, each with a 
complete set of eigenvectors and A B = B A, then they have a 
complete set of common (simultaneous) eigenvectors.

Define [A,B] = AB – BA, the commutator
If [A,B] ≠ 0, there is no common eigenvector

Thm.6: Any operator that commutes with all members Ai of a 
complete commuting set must itself be a function of Ai .
Rigged Hilbert triple: ( ) ⊂ H ⊂ )×

 )
Start with +, a countably infinite collection of vectors
V ⊂ + a collection of finite linear combinations
H ⊂ + completion of V, with limits of all norm-convergent sequences
) ⊂ H with some stronger convergence/functional requirement
H× = conjugate: all vectors f such that (f,h) < ∞ for all h ∈ H
Then V ⊂ ) ⊂ H = H× ⊂ )× ⊂ V× = +.   #[) = kets] < #[)× = bras].
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Now, go forth and

calculate!!


