Quantum Mechanics I

Mathematical Prerequisites

Linear Vector Spaces Linear Self-Adjoint Operators

Tristan Hübsch

Department of Physics and Astronomy, Howard University, Washington DC <u>http://physics1.howard.edu/~thubsch/</u>

Linear Vector Spaces

Output The definition has a pre-requisite \bigcirc Ground field is a collection of numbers ($\alpha,\beta,\gamma,\ldots$) for which: \bigcirc addition gives a group: $\alpha + \beta$, $\alpha + 0 = \alpha$, $\alpha + (-\alpha) = 0$, $(\alpha + \beta) + \gamma = \alpha + (\beta + \gamma)$ \bigcirc multiplication ($\alpha \neq 0$) gives a group: $\alpha \cdot \beta$, $\alpha \cdot 1 = \alpha$, $\alpha \cdot (1/\alpha) = 1$, $(\alpha \cdot \beta) \cdot \gamma = \alpha \cdot (\beta \cdot \gamma)$ \bigcirc multiplication distributes accross addition: $\alpha \cdot (\beta + \gamma) = \alpha \cdot \beta + \alpha \cdot \gamma$ \bigcirc For Quantum Mechanics, the ground field will be ${f C}$ \bigcirc A **C**-Linear vector space *V* is a collection of objects v_i , \bigcirc such that all **C**-linear combinations $\Sigma_i \alpha_i v_i$ are also in V. E.g., solutions of linear differential equations form a vector space. E.g., Maxwell's EM equations; superpositions of the *E*- and *B*-fields \bigcirc Linearly independent: $\alpha_1 v_1 + \alpha_2 v_2 = 0$ only if $\alpha_1 = 0 = \alpha_2$ **Basis:** the smallest number of vectors $\{v_1, v_2, \ldots, v_d\}$ such that $\bigcirc v = \sum_{1 \le i \le d} \alpha_i v_i$ for each $v \in V$; $d = \dim(V)$.

Linear Vector Spaces

- \bigcirc Example: V = all linear combinations of e^x , e^{2x} and $e^x(e^x-1)$
 - \bigcirc A basis: { e^x , e^{2x} } since $\alpha_1 e^x + \alpha_2 e^{2x} = 0$ (for all x) only if $\alpha_1 = 0 = \alpha_2$
 - \bigcirc and $c_1e^x + c_2e^{2x} + c_3e^x(e^x-1) = (c_1-c_3)e^x + (c_2+c_3)e^{2x}$

Linear vector spaces may be

- \bigcirc Finite: dim(V) < ∞ , e.g., 3D real vectors
- \bigcirc **Discrete**: dim(V) = ∞ but *V*-bases are countable, e.g., guitar string
- \bigcirc Continuous: dim(V) = ∞ but *V*-basis are uncountable,
 - e.g., all differentiable functions
- \bigcirc Also, span(v_1 , v_2 , v_3) = vector space of all linear combinations of v_1 , v_2 , v_3 \bigcirc In QM, all three occur, and quite regularly
- We will write, formally:
 - \bigcirc { ϕ_n } for a basis of the linear vector space and $\Sigma_n c_n \phi_n$ of a superposition, regardless whether *n* is finite, discrete or continuous
 - Where necessary, remark on any subtleties incurred by this

Linear Vector Spaces

- \bigcirc A scalar product (χ , ψ) is a 2-argument function such that:
 - $\bigcirc a$: (χ , ψ) is a complex scalar
 - $\bigcirc b: (\psi, \chi) = (\chi, \psi)^*$
 - $\bigcirc c: (\chi, c_1\psi_1 + c_2\psi_2) = c_1(\chi, \psi_1) + c_2(\chi, \psi_2)$
 - $\bigcirc d$: $(\psi, \psi) \ge 0$, and $(\psi, \psi) = 0$ only if $\psi = 0$
 - \bigcirc Together, (*b*) and (*c*) imply $(c_1\chi_1 + c_2\chi_2, \psi) = c_1^*(\chi_1, \psi) + c_2^*(\chi_2, \psi)$

Solution For discrete (countable) vector spaces,

 \bigcirc a vector ψ is a column-vector with components ψ_i $\bigcirc (\chi, \psi) = (\text{row}-\chi) \cdot (\text{column}-\psi) = \sum_i \chi_i^* \psi_i$

For continuous (uncountable) vector spaces,

 \bigcirc a vector ψ is a function with "components" $\psi(x)$ \bigcirc (χ, ψ) = ∫dx w(x) $\chi^*(x)$ $\psi(x)$, where w(x) ≥ 0 is a weight-function \bigcirc w(x) > 0, except w(x) = 0 at isolated points

Linear Vector Spaces

 \bigcirc Using (*d*), we *define* the norm: $\|\psi\| \equiv (\psi, \psi)^{\frac{1}{2}}$

- Two vectors are orthogonal w.r. to a given scalar product
 - \bigcirc if the scalar product vanishes $(\chi, \psi) = 0$
 - \bigcirc May also define the angle $\measuredangle_{\chi,\psi} \equiv \cos^{-1}[(\chi,\psi)/(\|\chi\|\|\psi\|)]$
 - A set of vectors (or a basis) is orthogonal if (ψ_i , ψ_j) = 0 for *i* ≠ *j*
 - \bigcirc A set of vectors (or a basis) is orthonormal if $(\psi_i, \psi_j) = \delta_{ij}$

The latter case implicitly requires a Dirac delta-symbol

- Two standard inequalities:
- Schwarz's inequality: $|(\chi, \psi)| \le ||\chi|| ||\psi||$ Triangle inequality: $||(\chi+\psi)|| \le ||\chi||+||\psi||$

Linear Vector Spaces

- \bigcirc For each *V*, there is a *dual* space of linear functionals on *V*
 - \bigcirc A functional assigns to each vector a scalar $F[\psi] \in \mathbb{C}$
 - \bigcirc A functional is linear if $F[c_1\psi_1+c_2\psi_2] = c_1F[\psi_1] + c_2F[\psi_2]$
 - \bigcirc Functionals themselves form a vector space, *V*°, by defining \bigcirc (*C*₁*F*₁ + *C*₂*F*₂)[ψ] ≡ *C*₁*F*₁[ψ] + *C*₂*F*₂[ψ]
- Riesz theorem: there is an isomorphism $V \leftrightarrow V^{\circ}$ such that $X[\psi] = (\chi, \psi)$.
 - \bigcirc Clearly, χ defines $X[...] = (\chi,...)$
 - \bigcirc In turn, *X*[...] defines $\chi = \sum_i (F[\psi_i])^* \psi_i$ w.r. to any basis $\{\psi_i\}$
 - Dirac notation: $\psi \rightarrow |\psi\rangle$ and $X[...] = (\chi,...) \rightarrow \langle \chi |$
 - \bigcirc Then $(\chi, \psi) = \langle \chi | \psi \rangle$

However, for infinite-dimensional vector spaces, subtleties may force us to consider rigged Hilbert space triples

where there are more bras than kets

Linear Self-Adjoint Operators

- An operator acts on a vector and produces a vector Omain = all vectors on which an operator is defined to act An operator is linear if $F(c_1\psi_1+c_2\psi_2) = c_1(F\psi_1) + c_2(F\psi_2)$ A = B means that $A\psi = B\psi$ for all ψ in the common domain Operator algebra Sum: $(A+B)\psi = A\psi + B\psi$ Product: $AB\psi = A \circ B\psi = A(B\psi)$; A(BC) = (AB)C but $AB \neq BA$ In a discrete vector space, operators are matrices
 - Operatorial identities $\frac{\partial}{\partial x}x = 1 + x\frac{\partial}{\partial x}$ Operatorial identities $\frac{\partial}{\partial x}x = 1 + x\frac{\partial}{\partial x}$ Operatorial identities $\frac{\partial}{\partial x}x \psi(x) = 1 \psi(x) + x\frac{\partial}{\partial x}\psi(x)$

Action to left: $(\langle \chi | A \rangle | \psi \rangle := \langle \chi | A | \psi \rangle \quad \forall \langle \chi | , | \psi \rangle$

Linear Self-Adjoint Operators

• The trace: $\operatorname{Tr}(A) := \sum_{j} \langle \psi_{i} | A | \psi_{i} \rangle$ • is cyclic: $\operatorname{Tr}(AB \cdots C) = \operatorname{Tr}(B \cdots CA)$ $\operatorname{Tr}(AB) = \operatorname{Tr}(BA)$ • For operators on finite vector spaces, $\operatorname{Tr} = \operatorname{sum}$ of diagonal elements • For operators on infinite vector spaces, $\operatorname{Tr} = \operatorname{sum}$ must converge • Adjoint: $\langle \chi | A^{\dagger} | \psi \rangle := \langle \psi | A | \chi \rangle^{*}$ $\forall \langle \chi | , | \psi \rangle$ • Properties: $(cA)^{\dagger} = c^{*}A^{\dagger}$ $c \in \mathbb{C}$ $(A + B)^{\dagger} = A^{\dagger} + B^{\dagger}$ $(AB)^{\dagger} = B^{\dagger}A^{\dagger}$ • Exterior product $|\psi\rangle\langle\chi|$ • is an operator

Self-Adjoint: $\langle \chi | A^{\dagger} | \psi \rangle \stackrel{!}{=} \langle \chi | A | \psi \rangle \quad \forall \langle \chi | , | \psi \rangle$ $| \qquad | \qquad | \qquad | \qquad Just like a$ $\langle \psi | A | \chi \rangle^* \stackrel{!}{=} \langle \psi | A^{\dagger} | \chi \rangle$ Hermitian conjugate of a matrix $M_{ij} = (M_{ji})^*$

Linear Self-Adjoint Operators

no dagger!

- $\bigcirc \text{Thm.1:} \quad \langle \psi | A | \psi \rangle = \langle \psi | A | \psi \rangle^* \quad \Rightarrow \quad \langle \psi_1 | A | \psi_2 \rangle = \langle \psi_2 | A | \psi_1 \rangle^*$ $\bigcirc \text{Definition:} \quad \boldsymbol{A} |\alpha_n\rangle = \alpha_n |\alpha_n\rangle$ eigenvector eigenvalue

- \bigcirc Thm.2: If $A = A^{\dagger}$, then all eigenvalues are real.
- \bigcirc Thm.3: If $A = A^+$, then eigenvectors of distinct eigenvalues are orthogonal.
- Definition: a set of vectors (w/prop.X) is complete, then all vectors (w/prop.X) can be written as a linear combination
- Formally: $\{|\psi_i\rangle\}$ complete $\Rightarrow \sum_i |\psi_i\rangle \langle \psi_i| = \mathbb{1}$

○Indeed:

$$\begin{aligned} |\chi\rangle &= \mathbb{1} |\chi\rangle = \sum_{i} |\psi_{i}\rangle \langle \psi_{i}| |\chi\rangle = \sum_{i} |\psi_{i}\rangle \underbrace{\langle \psi_{i}|\chi\rangle}_{:=c_{i}} \\ &= \sum_{i} c_{i} |\psi_{i}\rangle \quad c_{i} := \langle \psi_{i}|\chi\rangle \end{aligned}$$

$$egin{aligned} oldsymbol{\Pi}_i &:= \ket{\psi_i}ig\langle\psi_i \ oldsymbol{\Pi}_i oldsymbol{\Pi}_i &= oldsymbol{\Pi}_i \ oldsymbol{projectors} \end{aligned}$$

The Fourier theorem, generalized

Linear Self-Adjoint Operators

How so?

Consider $\partial_x := \partial/\partial x$ and know that e^{ax} are eigenfunctions: $\partial_x e^{ax} = ae^{ax}$ Is ∂_x self-adjoint? No: $\int_a^b dx f^*(x) [\partial_x g(x)] = [f^*(x)g(x)]_a^b \ominus \int_a^b dx [\partial_x f(x)]^* g(x)$ Sign: define $D_x := -i\partial_x$ Boundary terms: functions f(x) and g(x) must be restricted so it vanishes They define the the domain self-adjointness of D_x p.19–20 list four choices, only two of which make D_x self-adjoint

Linear Self-Adjoint Operators

- Solution States Thm.4 (spectral): Each self-adjoint operator has a unique family of projection operators $E(\lambda)$, for real λ , such that:
 - 1. If $\lambda_1 < \lambda_2$ then $E(\lambda_1)E(\lambda_2) = E(\lambda_2)E(\lambda_1) = E(\lambda_1)$.
 - 2. If $\epsilon > 0$ then $\lim_{\epsilon \to 0} E(\lambda + \epsilon) |\psi\rangle = E(\lambda) |\psi\rangle$.
 - 3. $\lim_{\lambda\to-\infty} E(\lambda) |\psi\rangle = 0.$
 - 4. $\lim_{\lambda \to +\infty} E(\lambda) |\psi\rangle = |\psi\rangle.$
 - 5. $\int_{-\infty}^{+\infty} dE(\lambda) \lambda = A.$ reconstructs A

 $E(\lambda)$ projects onto states with eigenvalue $\leq \lambda$

Linear Self-Adjoint Operators

- Thm.5: If A and B are self-adjoint operators, each with a complete set of eigenvectors and AB = BA, then they have a complete set of common (simultaneous) eigenvectors.
 - \bigcirc Define [A,B] = AB BA, the commutator
 - \bigcirc If [*A*,*B*] ≠ 0, there is no common eigenvector
- **Thm.6**: Any operator that commutes with all members A_i of a complete commuting set must itself be a function of A_i .

Rigged Hilbert triple: ($\Omega \subset H \subset \Omega^{\times}$)

Start with Ξ, a countably infinite collection of vectors
V ⊂ Ξ a collection of finite linear combinations
H ⊂ Ξ completion of V, with limits of all norm-convergent sequences
Ω ⊂ H with some *stronger* convergence / functional requirement
H[×] = conjugate: all vectors *f* such that (*f*,*h*) < ∞ for all *h* ∈ H
Then V ⊂ Ω ⊂ H = H[×] ⊂ Ω[×] ⊂ V[×] = Ξ. #[Ω = kets] < #[Ω[×] = bras].

Quantum Mechanics I

Now, go forth and

Tristan Hübsch

Department of Physics and Astronomy, Howard University, Washington DC <u>http://physics1.howard.edu/~thubsch/</u>