Quantum Mechanics I

Mathematical
 Prerequisites

Linear Vector Spaces Linear Self-Adjoint Operators

Department of Physics and Astronomy, Howard University, Washington DC http://phusics1.howard.edu/~thubsch/

Q
 Mathematical Prerequisites

Linear Vector Spaces

Q The definition has a pre-requisite
Q Ground field is a collection of numbers $(\alpha, \beta, \gamma, \ldots)$ for which:
Qaddition gives a group: $\alpha+\beta, \alpha+0=\alpha, \alpha+(-\alpha)=0,(\alpha+\beta)+\gamma=\alpha+(\beta+\gamma)$
Q multiplication $(\alpha \neq 0)$ gives a group: $\alpha \cdot \beta, \alpha \cdot 1=\alpha, \alpha \cdot(1 / \alpha)=1,(\alpha \cdot \beta) \cdot \gamma=\alpha \cdot(\beta \cdot \gamma)$
Q multiplication distributes accross addition: $\alpha \cdot(\beta+\gamma)=\alpha \cdot \beta+\alpha \cdot \gamma$
QFor Quantum Mechanics, the ground field will be \mathbb{C}
Q \mathbb{C}-Linear vector space V is a collection of objects v_{i},
Q such that all \mathbb{C}-linear combinations $\Sigma_{i} \alpha_{i} v_{i}$ are also in V.
Q E.g., solutions of linear differential equations form a vector space.
QE.g., Maxwell's EM equations; superpositions of the E - and B-fields
Linearly independent: $\alpha_{1} v_{1}+\alpha_{2} v_{2}=0$ only if $\alpha_{1}=0=\alpha_{2}$
Basis: the smallest number of vectors $\left\{v_{1}, v_{2}, \ldots, v_{d}\right\}$ such that
$Q v=\Sigma_{1 \leq i \leq d} \alpha_{i} v_{i}$ for each $v \in V ; d=\operatorname{dim}(V)$.

Mathematical Prerequisites

Linear Vector Spaces

Q Example: $V=$ all linear combinations of $e^{x}, e^{2 x}$ and $e^{x}\left(e^{x}-1\right)$
Q A basis: $\left\{e^{x}, e^{2 x}\right\}$ since $\alpha_{1} e^{x}+\alpha_{2} e^{2 x}=0$ (for all x) only if $\alpha_{1}=0=\alpha_{2}$
0 and $c_{1} e^{x}+c_{2} e^{2 x}+c_{3} e^{x}\left(e^{x}-1\right)=\left(c_{1}-c_{3}\right)\left(e^{x}\right)+\left(c_{2}+c_{3}\right)\left(e^{2 x}\right)$
Q Linear vector spaces may be
Q Finite: $\operatorname{dim}(\mathrm{V})<\infty$, e.g., 3D real vectors
Q Discrete: $\operatorname{dim}(V)=\infty$ but V-bases are countable, e.g., guitar string
Q Continuous: $\operatorname{dim}(\mathrm{V})=\infty$ but V-basis are uncountable, e.g., all differentiable functions

Q Also, $\operatorname{span}\left(v_{1}, v_{2}, v_{3}\right)=$ vector space of all linear combinations of v_{1}, v_{2}, v_{3}
In QM, all three occur, and quite regularly
We will write, formally:
$Q\left\{\phi_{n}\right\}$ for a basis of the linear vector space and $\Sigma_{n} c_{n} \phi_{n}$ of a superposition, regardless whether n is finite, discrete or continuous
Q Where necessary, remark on any subtleties incurred by this

Mathematical Prerequisites

Linear Vector Spaces

Q scalar product (χ, ψ) is a 2-argument function such that:
Qa: (χ, ψ) is a complex scalar
$Q b:(\psi, \chi)=(\chi, \psi)^{*}$
Qc: $\left(\chi, c_{1} \psi_{1}+c_{2} \psi_{2}\right)=c_{1}\left(\chi, \psi_{1}\right)+c_{2}\left(\chi, \psi_{2}\right)$
Qd: $(\psi, \psi) \geq 0$, and $(\psi, \psi)=0$ only if $\psi=0$
Q Together, (b) and (c) imply $\left(c_{1} \chi_{1}+c_{2} \chi_{2}, \psi\right)=c_{1}{ }^{*}\left(\chi_{1}, \psi\right)+c_{2}{ }^{*}\left(\chi_{2}, \psi\right)$
Q For discrete (countable) vector spaces,
Q a vector ψ is a column-vector with components $\psi_{i} \square$
$Q(\chi, \psi)=($ row $-\chi) \cdot($ column $-\psi)=\sum_{i} \chi_{i}{ }^{*} \psi_{i}$

For continuous (uncountable) vector spaces,
Q a vector ψ is a function with "components" $\psi(x)$
$Q(\chi, \psi)=\int \mathrm{d} x w(x) \chi^{*}(x) \psi(x)$, where $w(x) \geq 0$ is a weight-function
Q $w(x)>0$, except $w(x)=0$ at isolated points

Mathematical Prerequisites

Linear Vector Spaces

QUsing (d), we define the norm: $\|\psi\| \equiv(\psi, \psi)^{1 / 2}$
Two vectors are orthogonal w.r. to a given scalar product
Qif the scalar product vanishes $(\chi, \psi)=0$
QMay also define the angle $\star_{\chi, \psi} \equiv \cos ^{-1}[(\chi, \psi) /(\|\chi\|\|\psi\|)]$
Q A set of vectors (or a basis) is orthogonal if $\left(\psi_{i}, \psi_{j}\right)=0$ for $i \neq j$
Q A set of vectors (or a basis) is orthonormal if $\left(\psi_{i}, \psi_{j}\right)=\delta_{i j}$
Q The latter case implicitly requires a Dirac delta-symbol
Two standard inequalities:
QSchwarz's inequality: $|(\chi, \psi)| \leq\|\chi\|\|\psi\|$
QTriangle inequality: $\|(\chi+\psi)\| \leq\|\chi\|+\|\psi\|$

\dot{Q}^{*}
 Mathematical Prerequisites

Linear Vector Spaces

QFor each V, there is a dual space of linear functionals on V
Q A functional assigns to each vector a scalar $F[\psi] \in \mathbb{C}$
Q A functional is linear if $F\left[c_{1} \psi_{1}+c_{2} \psi_{2}\right]=c_{1} F\left[\psi_{1}\right]+c_{2} F\left[\psi_{2}\right]$
Q Functionals themselves form a vector space, V°, by defining
$Q\left(C_{1} F_{1}+C_{2} F_{2}\right)[\psi] \equiv C_{1} F_{1}[\psi]+C_{2} F_{2}[\psi]$
QRiesz theorem: there is an isomorphism $V \leftrightarrow V^{\circ}$ such that $X[\psi]=(\chi, \psi)$.
Q Clearly, χ defines $X[\ldots]=(\chi, \ldots)$
Q In turn, $X[\ldots]$ defines $\chi=\sum_{i}\left(\mathrm{~F}\left[\psi_{i}\right]\right)^{*} \psi_{i}$ w.r. to any basis $\left\{\psi_{i}\right\}$
Dirac notation: $\psi \rightarrow|\psi\rangle$ and $X[\ldots]=(\chi, \ldots) \rightarrow\langle\chi|$
9 Then $(\chi, \psi)=\langle\chi \mid \psi\rangle$
QHowever, for infinite-dimensional vector spaces, subtleties may force us to consider rigged Hilbert space triples
Q where there are more bras than kets

Mathematical Prerequisites

Linear Self-Adjoint Operators

Q An operator acts on a vector and produces a vector
QDomain $=$ all vectors on which an operator is defined to act
Q An operator is linear if $F\left(c_{1} \psi_{1}+c_{2} \psi_{2}\right)=c_{1}\left(F \psi_{1}\right)+c_{2}\left(F \psi_{2}\right)$
Q $A=B$ means that $A \psi=B \psi$ for all ψ in the common domain
Q Operator algebra
QSum: $(A+B) \psi=A \psi+B \psi$
QProduct: $A B \psi=A \circ B \psi=A(B \psi) ; A(B C)=(A B) C$ but $A B \neq B A$
Q In a discrete vector space, operators are matrices
QOperatorial identities $\frac{\partial}{\partial x} x=\mathbb{1}+x \frac{\partial}{\partial x}$
Q mean

$$
\frac{\partial}{\partial x} x \psi(x)=\mathbb{1} \psi(x)+x \frac{\partial}{\partial x} \psi(x)
$$

Action to left:

$$
(\langle x| \boldsymbol{A})|\psi\rangle:=\langle\chi| \boldsymbol{A}|\psi\rangle \quad \forall\langle\chi|,|\psi\rangle
$$

Q:
 Mathematical Prerequisites

Linear Self-Adjoint Operators

QThe trace: $\operatorname{Tr}(A):=\sum_{j}\left\langle\psi_{i}\right| A\left|\psi_{i}\right\rangle$
Qis cyclic: $\operatorname{Tr}(A B \cdots C)=\operatorname{Tr}(B \cdots C A) \quad \operatorname{Tr}(A B)=\operatorname{Tr}(B A)$
QFor operators on finite vector spaces, $\mathrm{Tr}=$ sum of diagonal elements
Q For operators on infinite vector spaces, $\mathrm{Tr}=$ sum must converge
© Adjoint: $\langle x| A^{\dagger}|\psi\rangle:=\langle\psi| A|x\rangle^{*} \quad \forall\langle\chi|,|\psi\rangle$
Q Properties: $\quad(c A)^{\dagger}=c^{*} A^{\dagger} \quad c \in \mathbb{C} \quad(A+B)^{\dagger}=A^{\dagger}+B^{\dagger} \quad(A B)^{\dagger}=B^{\dagger} A^{\dagger}$
Exterior product $|\psi\rangle\langle x|$ 水 $=\square \quad(|\psi\rangle\langle x|)^{\dagger}=|x\rangle\langle\psi|$
is an operator
Self-Adjoint:

$$
\begin{array}{cc}
\langle x| \boldsymbol{A}^{\dagger}|\psi\rangle \stackrel{!}{=}\langle x| \boldsymbol{A}|\psi\rangle & \forall\langle x|,|\psi\rangle \\
\langle\psi| & \\
\langle\psi \mid x\rangle^{*} \stackrel{!}{=}\langle\psi| \boldsymbol{A}^{\dagger}|x\rangle & \begin{array}{c}
\text { Just like a } \\
\text { Hermitian conjugate } \\
\text { of a matrix }
\end{array} \\
& M_{i j}=\left(M_{j i j}\right)^{*}
\end{array}
$$

Mathematical Prerequisites

Linear Self-Adjoint Operators

QThm.1: $\langle\psi| \boldsymbol{A}|\psi\rangle=\langle\psi| \boldsymbol{A}|\psi\rangle^{*} \quad \Rightarrow \quad\left\langle\psi_{1}\right| \boldsymbol{A}\left|\psi_{2}\right\rangle=\left\langle\psi_{2}\right| \boldsymbol{A}\left|\psi_{1}\right\rangle^{*}$
QDefinition: $\quad A\left|\alpha_{n}\right\rangle=\alpha_{\uparrow}\left|\alpha_{n}\right\rangle$
eigenvector eigenvalue
Q Thm.2: If $A=A^{\dagger}$, then all eigenvalues are real.
QThm.3: If $A=A^{\dagger}$, then eigenvectors of distinct eigenvalues are orthogonal.
Definition: a set of vectors ($\mathrm{w} /$ prop. X) is complete, then all vectors ($w /$ prop. X) can be written as a linear combination
Formally: $\left\{\left|\psi_{i}\right\rangle\right\}$ complete $\Rightarrow \sum_{i}\left|\psi_{i}\right\rangle\left\langle\psi_{i}\right|=\mathbb{1}$

$$
\mathbf{\Pi}_{i}:=\left|\psi_{i}\right\rangle\left\langle\psi_{i}\right|
$$

Q Indeed:

$$
\begin{aligned}
&|x\rangle=\mathbb{1}|\chi\rangle=\sum_{i}\left|\psi_{i}\right\rangle\left\langle\psi_{i}\right||\chi\rangle=\sum_{i}\left|\psi_{i}\right\rangle \underbrace{\left\langle\psi_{i}\right|| \rangle}_{:=c_{i}} \\
&=\sum_{i} c_{i}\left|\psi_{i}\right\rangle \quad c_{i}:=\left\langle\psi_{i} \mid x\right\rangle \\
& \hline
\end{aligned}
$$

$\boldsymbol{\Pi}_{i} \boldsymbol{\Pi}_{i}=\boldsymbol{\Pi}_{i}$ projectors

The Fourier theorem, generalized

Mathematical Prerequisites

Linear Self-Adjoint Operators

QThm. π : If $\quad A^{\dagger}=A \quad A|n\rangle=a_{n}|n\rangle, \quad\langle n \mid m\rangle=\delta_{n m} \quad \sum_{n}|n\rangle\langle n|=\mathbb{1}$
Qthen

$$
\boldsymbol{A}=\sum_{n} a_{n}|n\rangle\langle n| \quad f(\boldsymbol{A}):=\sum_{n} f\left(a_{n}\right)|n\rangle\langle n|
$$

Q Caveat: The existence and completeness of eigenvectors strongly depends on boundary conditions. [p.18-20]
\bigcirc How so?
QConsider $\partial_{x}:=\partial / \partial x$ and know that $e^{a x}$ are eigenfunctions: $\partial_{x} e^{a x}=a e^{a x}$
Q Is ∂_{x} self-adjoint?
No: $\left.\int_{\mathrm{a}}^{\mathrm{b}} \mathrm{d} x \mathrm{f}^{*}(x)\left[\partial_{x} \mathrm{~g}(x)\right]=\left[f^{*}(x) g(x)\right]_{\mathrm{a}}^{\mathrm{b}}\right) \Theta \int_{\mathrm{a}}^{\mathrm{b}} \mathrm{d} x\left[\partial_{x} f(x)\right]^{*} \mathrm{~g}(x)$
Q Sign: define $D_{x}:=-i \partial_{x}$
QBoundary terms: functions $f(x)$ and $g(x)$ must be restricted so it vanishes
QThey define the the domain self-adjointness of D_{x}
Q p.19-20 list four choices, only two of which make D_{x} self-adjoint

Mathematical Prerequisites

Linear Self-Adjoint Operators

Q Thm. 4 (spectral): Each self-adjoint operator has a unique family of projection operators $E(\lambda)$, for real λ, such that:

1. If $\lambda_{1}<\lambda_{2}$ then $E\left(\lambda_{1}\right) E\left(\lambda_{2}\right)=E\left(\lambda_{2}\right) E\left(\lambda_{1}\right)=E\left(\lambda_{1}\right)$.
2. If $\epsilon>0$ then $\lim _{\epsilon \rightarrow 0} E(\lambda+\epsilon)|\psi\rangle=E(\lambda)|\psi\rangle$.
3. $\lim _{\lambda \rightarrow-\infty} E(\lambda)|\psi\rangle=0$.
4. $\lim _{\lambda \rightarrow+\infty} E(\lambda)|\psi\rangle=|\psi\rangle$.
5. $\int_{-\infty}^{+\infty} \mathrm{d} E(\lambda) \lambda=A$. - reconstructs A
$E(\lambda)$ projects onto states with eigenvalue $\leq \lambda$

\dot{Q}^{\prime}
 Mathematical Prerequisites

Linear Self-Adjoint Operators

QThm.5: If A and B are self-adjoint operators, each with a complete set of eigenvectors and $A B=B A$, then they have a complete set of common (simultaneous) eigenvectors.
Q Define $[A, B]=A B-B A$, the commutator
Q If $[A, B] \neq 0$, there is no common eigenvector
QThm.6: Any operator that commutes with all members A_{i} of a complete commuting set must itself be a function of A_{i}.
Rigged Hilbert triple: $\left(\Omega \subset H \subset \Omega^{\times}\right)$
Q Start with Ξ, a countably infinite collection of vectors
$Q V \subset \Xi$ a collection of finite linear combinations
$Q H \subset \Xi$ completion of V , with limits of all norm-convergent sequences
$\mathrm{Q} \Omega \subset H$ with some stronger convergence/functional requirement
Q $H^{\times}=$conjugate: all vectors f such that $(f, h)<\infty$ for all $h \in H$
Q Then $V \subset \Omega \subset H=H^{\times} \subset \Omega^{\times} \subset V^{\times}=\Xi . \quad \#[\Omega=$ kets $]<\#\left[\Omega^{\times}=\right.$bras $]$.

