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. Linear Vector Spaces

L The definition has a pre-requisite

' . Ground field is a collection of numbers («,,y,...) for which:

@ addition gives a group: a+8, a+0=a, a+(-a)=0, (a+p)+y=a+(B+Y)

‘ O multiplication (a=0) gives a group: a8, a-1=a, a:(1/a)=1, (a-B)y=a:(fY)

O multiplication distributes accross addition: a-(f+y) = a- + a-y
» © For Quantum Mechanics, the ground field will be C
= .':?@A C-Linear vector space V' is a collection of objects v;,
7 4 Q such that all C-linear combinations X; &; v; are also in V.

54" . . . . .
/ 2a ©E.g., solutions of linear differential equations form a vector space.

:EHQ & Basis: the smallest number of vectors {v1, vy,..., va} such that
hm Qv =21<i<d @i vi for eachv € V; d = dim(V).
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. Linear Vector Spaces

® Example: V = all linear combinations of €%, e2* and e*(e*—1)
© A basis: {¢*, €%} since aie* + axe?* = 0 (for all x) only if a1 =0 = a»

© and cie* + Cm (Cz+C‘3@

. Linear vector spaces may be

' O Finite: dim(V) < o, e.g., 3D real vectors
© Discrete: dim(V) = co but V-bases are countable, e.g., guitar string

© Continuous: dim(V) = o but V-basis are uncountable,
e.g., all differentiable functions

@Also span(vi, vz, v3) = vector space of all linear combinations of v1, v, v3

' ) We W111 write, formally.
© {¢,} for a basis of the linear vector space and X, ¢, ¢, of a superposition,
regardless whether 7 is finite, discrete or continuous
© Where necessary, remark on any subtleties incurred by this
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inear Vector Spaces

. A scalar product (x,1) is a 2-argument function such that:

Qa: (x,¥) is a complex scalar

Qb (Px) =)

| G c: (X,01¢1+C21P2) = Cl(X,Bbl)JF CZ(X/‘PZ)

- 0d: (Y,)=0,and (,) =0 only if Y =0
. © Together, (b) and (c) imply (cix1+c2x2,¢) = c1” (x1,¥)+ 2 (x2,¥)
@For discrete (countable) vector spaces,

~ Qavector 1 is a column-vector with components ;

@(Xﬂab) = (row-yx)- (Columnqp) =Yixi U E)m = .

For continuous (uncountable) vector spaces,

S
e ~ ©a vector ¢ is a function with “components” 1(x)

.h;

9 (x,¥) = Jdx w(x) x"(x) Y(x), where w(x) > 0 is a weight-function
Qw(x) >0, except w(x) = 0 at isolated points

r:" 3 4
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inear Vector Spaces

. Using (d), we define the norm: 11l = (¢, )"
" Two vectors are orthogonal w.r. to a given scalar product

O if the scalar product vanishes (x,1) =0

-~ ©May also define the angle x4 = cos 1 [(x,)/ (I x I I 1)]

O A set of vectors (or a basis) is orthogonal if (1;,1;) =0 for i =
" O A set of vectors (or a basis) is orthonormal if (;,1;) = &

| © The latter case implicitly requires a Dirac delta-symbol
@TWO standard inequalities:

/7. ©Schwarz’s inequality: | (x, )| < IxlI Iyl
5 @Tnangle inequality: [(x+y)Il < Ixl+lyl




L For each V, there is a dual space of linear functionals on V

O A functional assigns to each vector a scalar F[y] €C

O A functional is linear if Flciy1+cap2] = c1 F[i1] + c2 F[1]

O Functionals themselves form a vector space, V°, by defining
@ (C1F1 + Co B[] = Ci Fa[yp] + Ca o]

Riesz theorem: there is an isomorphism V <> V°

such that X[¢] = (x, ).

¥ & ©Clearly, x defines X[...]=(x,...)

/2 ":": @In turn, X|.. ] defines x = Y.; (F[¢i])* ¥; w.r. to any basis {¢}

@ However, for infinite-dimensional vector spaces,

“'k subtleties may force us to consider rigged Hilbert space triples
‘“ © where there are more bras than kets
*
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inear Self-Adjoint Operators

) An operator acts on a vector and produces a vector
© Domain = all vectors on which an operator is defined to act
© An operator is linear if F (ciy1+c2t2) = c1 (Fy1) + c2 (F i)
© A = B means that Ay = B¢ for all ¢ in the common domain
_ Operator algebra
| QSum: (A+B)Y =AY + By
22 @Product: AB1 = A°B1 = A(B1); A(BC) = (AB)C but AB = BA
e, In a discrete vector space, operators are matrices

/. 0 Operatorial identities 9 =14 x 9
X dx ox X
mean 9 — 9
o~ 55 X00) = 1p(x) + x5 (x)

@Actlon to left:  ((x|A) [¢) == (x| AlY) ¥ (x|, |¢)



inear Self-Adjoint Operators

B L The trace: Te(A) := Z]. (; | Al ;)

- Qiscyclicc Te(AB---C) =Te(B---CA) Tr(AB) = Tr(BA)
: ~ ©For operators on finite vector spaces, Tr = sum of diagonal elements
© For operators on infinite vector spaces, Tr = sum must converge

U Adjoint: (x| A" [g) = (¢l Alx)" ¥ (xl.9)
@Properties (cA)f =c*A" ceC (A+B)"=A"+ B (AB)" = B'AT

Exterior product |¢) (x| Eﬂ n (1) ()" = 1)

is an operator

P/ 2 self-Adjoint: (x| A 19) = (x| Ale) ¥ (xl. 1)

—> || |l

. . \ ]p.st like a
(Pl AIX)" = (¢l A" [x) Hermitian conjugate
— of a matrix

M;j; = (M;i)*




. Linear Self-Adjoint Operators .y —

oThm.1: (p|Alg) = (plAlY)" = (¢l Alg2) = (P2| Algn)

L Definition:  Ala,) = &, |a,)

eigenvector eigenvalue

> Thm.2: If A = A, then all eigenvalues are real.

" Thm.3: If A = Af, then eigenvectors of distinct eigenvalues are
#  orthogonal.

. vectors (w / prop.X) can be written as a linear combination

. Definition: a set of vectors (w/prop.X) is complete, then all

)/ Formally: {|;)} complete = 2w (il =1 | T = [yy) (il

£ O Indeed: I
P & Indee x) =1|x) = Zi i) (il [x) = Zi ;) <¢l‘x> IT1; I, — I1,
=Y clg) o= (pilx) =¢; projectors

The Fourier theorem, generalized
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A=) ay|n) (n

. Caveat: The existence and completeness of eigenvectors
- strongly depends on boundary conditions. [p.18-20]

© Consider 0y :=0/0x and know that e® are eigenfunctions: 0e® = ge ™
o ©Is 0y self—ad]omt7 -

A, No: f dx £(x) [0x g(x)] [ a @fabdx [0x Ax)]" g(x)

' -5 O Sign: define Dy := —i0x - N

s @Boundary terms: functions flx) and g(x) must be restricted so it vanishes
=% O They define the the domain self-adjointness of D,

© p.19-20 list four choices, only two of which make D, self-adjoint
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oar Self-Adjoint Operators

L Thm.4 (spectral): Each self-adjoint operator has a unique

5. [CdE(A) A = A

A A
Ao
A1 &) 1

E(A2)

E(A1)

11

Ay

family of projection operators E(A), for real A, such that:

1. If Ay < Ay then E(A1)E(A2) = E(A)E(A1) = E(Aq).
2. If e > 0 then lim,_,o E(A+€) |[¢) = E(A) |).
3. lim)_, o E(A) |g) =0.

& limy o0 E(A) [9) = ).

— reconstructs A

E(A) projects
onto states with
eigenvalue < A

dE(A1)



“Mathematical Prerequisites

| 1' inear Self-Adjoint Operators

) Thm.5: If A and B are self-adjoint operators, each with a
complete set of eigenvectors and AB = BA, then they have a
complete set of common (simultaneous) eigenvectors.

O Define [A,B] = AB — BA, the commutator
- OIf [A,B] =0, there is no common eigenvector

&0 Thm.6: Any operator that commutes with all members A;of a
- complete commuting set must itself be a function of A;.

ngged Hilbert triple: (QcHcQ>)

@ Start with =, a countably infinite collection of vectors

_ @ V C = a collection of finite linear combinations

O H C E completion of V, with limits of all norm-convergent sequences
s O Q C H with some stronger convergence / functional requirement

3 % © H* = conjugate: all vectors f such that (/) < forallh € H

% " oThen VCQCH=H*CQ*CV*=5. #[Q=kets] <#[Q"=bras].
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Now, go forth and
calculate!!
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