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Don't Panic !

Quantum Mechanics I Nov. ’98.
Practice Problem Handout (T.Hübsch)

1. Boxed Particle

We will consider perturbing the “particle of mass M in an L×L square box”. The system
with the ‘unperturbed’ potential

V (x, y) =

{
0 while 0 ≤ x, y ≤ L ,
∞ otherwise,

is exactly known:

|m,n〉(0) =
2

L
sin(mπ

x

L
) sin(nπ

y

L
) (1.1a)

E(0)
m,n =

h̄2π2

2ML2
(m2 + n2) (1.1b)

are the exact expressions for the ortho-normalized ‘unperturbed’ wave-functions and ‘un-
perturbed’ energy levels. For the record, we write the ‘unperturbed’ Hamiltonian:

Ĥ(0) = − h̄2

2M

( ∂2

∂x2
+

∂2

∂y2

)
+ V (x, y) . (1.2)

The system is degenerate, and in part owing to the x↔ y symmetry, whence E
(0)
m,n =

E
(0)
n,m although |m,n〉(0) 6= |n,m〉(0) unless in fact m = n. In addition, there is accidental

degeneracy between states |m,n〉(0) and |q, r〉(0) for which n2+m2 = q2+r2. Nevertheless,
we shall see that for simple enough perturbations, this degeneracy will pose no problem;
we will be able to avoid the nonsensical vanishing denominators.

1. As the first perturbation, consider Ĥ(1) = αx. The original problem, with the Hamil-

tonian (1.2), is separable in Cartesian coordinates as Ĥ(0) = Ĥ
(0)
x + Ĥ

(0)
y , and we find that

the same is true of the perturbed Hamiltonian:

Ĥ = Ĥx + Ĥy =
[
Ĥ(0)

x + Ĥ(1)
]
+ Ĥ(0)

y . (1.3)

Thus, the perturbed problem will also have wave-functions in the ψm(x)ψ
(0)
n (y), where

ψ
(0)
n (y) = |n〉(0)

y
=

√
2
L sin(nπ y

L ) and only the ψm(x) will differ from ψ
(0)
m (x) = |m〉(0)

x
=

√
2
L

sin(mπ x
L
).

We will need the matrix-elements of Ĥ(1) are:
(0)〈m,n| Ĥ(1) |m′, n′〉(0) = α

(0)〈m,n|x |m′, n′〉(0) , (1.4a)
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= α
[
(0)〈m| x |m′〉(0)

x

] [
(0)〈n| 1l |n′〉(0)

y

]
, (1.4b)

= α

[
− 8Lmm′

π2(m2 −m′2)2

(1 − (−1)∆m

2

)][
δn,n′

]
, (1.4c)

where the y-integral follows by ortho-normality, and the x-integral is the only one we
needed. It was evaluated as follows (sorry for the hasty incomplete result on the hand-
written note).

(0)〈m| x |m′〉(0)
x

=
2

L

∫ L

0

dx sin(mπ x
L ) x sin(m′π x

L ) , (1.5a)

=
2L

π2

∫ π

0

dφ sin(mφ) φ sin(m′φ) , (1.5b)

=
2L

π2

∫ π

0

dφ 1
2

[
cos

[
(m−m′)φ

]
− cos

[
(m+m′)φ

]]
φ , (1.5c)

=
L

π2

[cos[(m−m′)π]

(m−m′)2
− 1

(m−m′)2
− cos[(m+m′)π]

(m+m′)2
+

1

(m+m′)2

]
,

=
L

π2

[ (−1)m−m′ − 1

(m−m′)2
− (−1)m+m′ − 1

(m+m′)2

]
, (1.5e)

=
2L

π2

[ (−1)∆m − 1

2

] (m+m′)2 − (m−m′)2

(m2 −m′2)2
, (1.5f)

= −2L

π2

[1 − (−1)∆m

2

] 4mm′

(m2 −m′2)2
, (1.5g)

= − 8Lmm′

π2(m2 −m′2)2

[1 − (−1)∆m

2

]
. (1.5h)

We integrated by parts
∫ π

0

dφ cos(Nφ)φ =
[ φ
N

sin(Nφ)
]π

0
− 1

N

∫ π

0

dφ sin(Nφ) =
[
0
]

+
1

N2

[
cos(Nφ)

]π

0
, (1.6)

introduced the abbreviation ∆m
def
= (m−m′), used that cos(Nπ) = (−1)N , and than

also that (−1)m+m′

= (−1)m−m′+2m′

= (−1)∆m(−1)2m′

= (−1)∆m. Note the factor
1
2

(
1 − (−1)∆m

)
: this equals 1 if ∆m is odd and vanishes if ∆m is even. So, in particular,

the matrix element is identically zero if m = m′. Note also that the δn,n′ factor implies
that n = n′. To summarize,

(0)〈m,n|x |m′, n′〉(0) =





− 8αLmm′

π2(m2 −m′2)2
n=n′ and ∆m = (m−m′) odd ;

0 otherwise .

(1.7)

We can now address the physically interesting questions.
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a. Even without any calculation, we know that the degeneracy created by the x↔ y sym-
metry will be lifted (lost). This is simply because the new Hamiltonian, Ĥ = Ĥ(0) + Ĥ(1)

no longer commutes with the Px:y symmetry operator. Thus, the energies (expectation
values of the new Hamiltonian) of a state |m,n〉 and its x↔ y “mirror” state, Px:y |m,n〉
will be different. In fact, if |m,n〉 is an eigenstate of the new Hamiltonian, Px:y |m,n〉
will not even be an eigenstate! To see this differently, note that the ‘unperturbed’ energy

eigenvalues can be written as E
(0)
m,n = xE

(0)
m +yE

(0)
n . With the perturbation depending only

on x, the exact energy eigenvalues will admit a similar separation, Em,n = xEm + yEn.

Here, however, yEn = yE
(0)
n while xEm 6= xE

(0)
m will be shifted by an amount depending on

α, which is an arbitrary parameter. Therefore, for some special values of α we may find
some (new) degeneracy, but all of the degeneracy of the ‘unperturbed’ case will be lost.

b. The first order shift in the energy is equal to the diagonal matrix element of Ĥ(1)—
which is zero: see Eq. (1.7).

c. The first order correction to the wave-function is

|m,n〉(1) = −
∑

(m′,n′)6=(m,n)

(0)〈m′, n′| Ĥ(1) |m,n〉(0)

E
(0)
m′,n′ − E

(0)
m,n

|m′, n′〉(0) , (1.8a)

=
16αML3

h̄2π4

∑

(m′,n′)6=(m,n)

mm′

(m2−m′2)2
1
2 (1 − (−1)∆m)δn,n′

m′2 + n′2 −m2 − n2
|m′, n′〉(0) , (1.8b)

=
16αML3

h̄2π4

∑

m′ 6=m

mm′

(m′2 −m2)3
1 − (−1)∆m

2
|m′, n〉(0) , (1.8c)

=
16αML3

h̄2π4

∑

k>(1−m)/2

m(m+ 2k − 1)

(2k − 1)3(2k + 2m− 1)3
|m+ 2k − 1, n〉(0) . (1.8d)

Note that the condition (m′, n′) 6= (m,n) on the summation merely prevents both labels to

be equal, i.e., the sum extends over all wave-functions other than |m,n〉(0), whose correction

we are calculating 1! We then used that the δn,n′ factor in the matrix element enforces the
y-labels (n, n′) to be equal, whereupon the x-labels (m,m′) must be different. In the final
line we substituted (m−m′) = ∆m = 1−2k since ∆m must be odd for the matrix element
to be non-zero. Now m′ = m + 2k − 1, and since we had that m,m′ > 0, it follows that
m+ 2k − 1 > 0 or k > (1−m)/2, as specified in the last sum.

d. The second order correction to the energy is

E(2)
m,n = −

∑

(m′,n′)6=(m,n)

∣∣(0)〈m′, n′| Ĥ(1) |m,n〉(0)
∣∣2

E
(0)
m′,n′ − E

(0)
m,n

, (1.9a)

1 A correction of |m, n〉(0) proportional to itself would be irrelevant as this would have merely

produced a rescaling of the original wave-function—a multiplicative factor which would in the end
be reset by normalization.
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= −128α2ML4

h̄2π6

∑

(m′,n′)6=(m,n)

m2m′2

(m2−m′2)4

(
1
2(1 − (−1)∆m)

)2

δ2n,n′

m′2 + n′2 −m2 − n2
, (1.9b)

= −128α2ML4

h̄2π6

∑

m′ 6=m

m2m′2

(m′2 −m2)5

(1 − (−1)∆m

2

)2

, (1.9c)

= −128α2ML4

h̄2π6

∑

k>(1−m)/2

m2(m+ 2k − 1)2

(2k − 1)5(2k + 2m− 1)5
. (1.9d)

It is not our goal here to evaluate the sums; we merely note that for any given m,n,
the sums converge fairly rapidly (as ∼ k−5 for the wave-function, and as ∼ k−8 for the
second order shift in the energy) to some well-defined numbers. Instead, note that the
perturbative corrections all feature a factor of h̄−2. This is typical; compare with all other
examples in the text (for the Hydrogen atom, recall that the Bohr radius is proportional
to h̄2). Furthermore, note that the corrections of nth order are proportional to αn. This
parameter may be thought of as the coupling or control parameter of the perturbation:
in the limit α → 0, we recover the ‘unperturbed’ results. Indeed, the whole perturbation
series of both the Energy eigenvalues and the wave-functions (and any other observable!)
turns out to be a formal 2 power series of this α.

—◦—

2. As the second perturbation, consider Ĥ(1) = α(x + y). This time,
[
Px:y , Ĥ

(1)
]

=
0, whence the degeneracy stemming from the x ↔ y symmetry will persist. Since the
perturbation is a sum of a purely x-dependent and a purely y-dependent term, we can

account for them separately. Now both xE
(0)
m and yE

(0)
n are being shifted equally, by an

amount proportional to α2, to lowest order; see (1.9)—one simply adds terms with the
rôles of x,m,m′ and y, n, n′ swapped. α being arbitrary, the accidental degeneracy will be
lifted in general, and only special choices of α will result in some (new) degeneracy.

3. The third perturbation, Ĥ(1) = α(x − y), does not commute with the symmetry
operator Px:y, so that all degeneracy will be lifted (lost) for general α. The expressions
for the shift in the energy and the change of the wave-function are obtained from those
above, by subtracting terms with the rôles of x,m,m′ and y, n, n′ swapped.

—◦—

Most importantly of all, however, note that the vanishing of the first order perturbative
correction of the energy eigenvalues certainly did not imply no correction at all. The
vanishing of the diagonal matrix elements of Ĥ(1) stems from a symmetry property: the
energy eigenstates in a 1-dimensional box are either symmetric or antisymmetric with
respect to the reflection about the mid-point, x 7→ (L−x). The diagonal matrix elements
involve integration over squares of eigenfunctions which are necessarily symmetric with

2 This series must be regarded as a formal one, as convergence has not been proven in general.
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respect to this reflection. The perturbation being antisymmetric with respect to this
reflection, the integrals vanish, as with (upon shifting the integration variable)

∫ +a

−a

dx f(x) = 0 , if f(−x) = −f(x) . (1.10)

2. Oscillators

Simple perturbations of the linear (and multi-dimensional) harmonic oscillator exhibit
more of the hallmark of this popular paradigm: exact solubility.

Consider perturbing the standard oscillator

Ĥ(0) = − h̄2

2M

d2

dx2
+

1

2
Mω2x2 , (2.1)

by adding the perturbation
Ĥ(1) = αx2 + βx+ γ , (2.2)

where α, β, γ are suitable constants. Use the creation/annihilation operator formalism:

Ĥ(1) =
αh̄

2Mω

(
â†2 + â†â+ ââ† + â2

)
+ β

√
h̄

2Mω

(
â† + â

)
+ γ ,

=
αh̄

2Mω

(
â†2 + 2N̂ + 1 + â2

)
+ β

√
h̄

2Mω

(
â† + â

)
+ γ .

(2.3)

The matrix elements are:

(0)〈m| Ĥ(1) |n〉(0) =
αh̄

2Mω

[√
n(n+1)δm,n+2 + (2n+ 1)δm,n +

√
m(m+1)δm+2,n

]

+ β

√
h̄

2Mω

[√
nδm,n+1 +

√
mδm+1,n

]
+ γδm,n , (2.4a)

Thus, the first order shift in the energy eigenvalues are

E(1)
n =

αh̄

2Mω
(2n+ 1) + γ . (2.5)

The first order correction to the wave-functions are

|n〉(1) =
α

4Mω2

[√
(n−1)n |n−2〉(0) −

√
(n+2)(n+1) |n+2〉(0)

]

+
β√

2Mh̄ω3

[√
n |n−1〉(0) −

√
n+1 |n+1〉(0)

]
.

(2.6)

The second order corrections to the energy eigenvalues are

E(2)
n = − α2h̄2

4M2ω2

[ (n+2)(n+1)

2h̄ω
+
n(n−1)

−2h̄ω

]
− β2h̄

2Mω

[n+ 1

h̄ω
+

n

−h̄ω
]
, (2.7a)

= − α2h̄

4M2ω3

[
2n+ 1

]
− β2h̄

2Mω

[
+ 1

]
, (2.7a)
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Amusingly, the perturbed linear harmonic oscillator problem

Ĥ = − h̄2

2M

d2

dx2
+

1

2
Mω2x2 + αx2 + βx+ γ , (2.8)

can also be solved exactly. We simply shift the coordinate, the frequency and the zero-point
energy:

Ĥ = − h̄2

2M

d2

dz2
+

1

2
Mω̃2z2 + V0 , (2.9)

where

z = x+
β

Mω2 + 2α
, V0 = γ − β2

2(Mω2 + 2α)
, (2.10a)

ω̃ = ω + ∆ω = ±
√
ω2 +

2α

M
, ∆ω = −ω ±

√
ω2 +

2α

M
, (2.10b)

and where d
dz = d

dx since the shifts are constant. However, the Hamiltonian (2.9) obviously
looks the same as (2.1), except that the constant V0 has been added. Thus, the energy
eigenvalues are

En = h̄ω̃(n+ 1
2
) + V0 . (2.11)

In terms of the original parameters in (2.8),

En = h̄ω(n+ 1
2)

√
1 +

2α

Mω2
+ γ − β2

2Mω2(1 + 2α
Mω2 )

. (2.12)

Of course, this can be expanded

En = h̄ω(n+ 1
2)

[
1 +

α

Mω2
− 1

8

α2

M2ω4
+ . . .

]

+ γ − β2

2Mω2

[
1 − 2α

Mω2
+ . . .

]
,

(2.13)

recovering the first and second order shifts in the energy eigenvalues obtained above and

more. (Try expanding the wave-functions |n〉 ∝ Hn(ζ)e−
1
2 ζ2

, where ζ =
√

Mω̃
h̄
z.)

Obviously, this latter method is not only easier but also produces the exact re-
sult (2.12). Note that this means that the perturbation series in fact converges to the neat
expressions in (2.12). It should be equally obvious that this is about the only type of 1-
dimensional problems so easily solved. (Try perturbing similarly various multi-dimensional
oscillators.) For perturbations involving higher powers of x, it is typically fastest to use
the creation/annihilation operator method used in the first part of this practice problem.

DON’T TAKE MY WORD FOR THESE RESULTS!

CALCULATE YOURSELF!
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