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1. Piecewise Constant Potentials

Herein, we will consider some simple potentials in turn, and see to learn about some generic
behavior of quantum systems.

1.1. Constant potential

The absolutely simplest potential of all is the constant one, which we may choose to be
V (x) = 0. The corresponding force is of course zero, so that this corresponds to a ‘free’
particle. The (time independent) Schrödinger equation becomes

[

− h̄2

2m

d2

dx2

]

ψ
E

= Eψ
E
, (1.1)

or
[ d2

dx2
+ k2

]

ψ
E

= 0 , (1.2)

where k =
√

2mE
h̄

is the constant wave-number (square-roots are always taken with the
positive sign). The solutions of this simple 2nd order differential equation form a 2-
parameter solution set which may be written as

ψ
E
(x) = C+eikx + C−e−ikx = A cos(kx) +B sin(kx) = D sin(kx+ δ) . (1.3)

The pair of constants C± is easily related to A,B and to D, δ; one or the other or the
third representation may be more advantageous in specific calculations, and the Student is
required to know how to use and toggle between them all. Notice that there is no particular
boundary condition 1) on this type of wavefunctions, whence the parameters D, δ, E remain
constrained only by the (continuous) ortho-normalization condition:

∫ ∞

−∞
dx ψ∗

E′
ψ

E
= δ(E −E′) , (1.4)

so that ∫ ∞

−∞
dE′

∫ ∞

−∞
dx ψ∗

E′
ψ

E
= 1 (1.5)

is well-defined 2).

1) By ‘boundary’, here is meant ‘infinity’: when x → ±∞; such are also called ‘asymptotic
conditions’.

2) Note that, strictly speaking, the integral (1.4) diverges for E ′ = E, but does so in a ‘tame’
enough manner, so that the double integral (1.5) is finite and may be used to normalize the overall
amplitude of ψ

E
.
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Eq. (1.4), i.e., (1.5) is a single condition on three variables, D, δ, E, whence two of
them remain free. Typically, the phase δ and the energy E; the condition (1.4) is used to
fix the (overall) amplitude, D.

The physical meaning of the wave-function ψ
E
(x) = C+eikx+C−e−ikx is straightfor-

ward: upon multiplication with eiωt of the first part, eikx, we obtain eikx → ei(kx+ωt),
where ω = E/h̄ = h̄k2/2m. Since ei(kx+ωt) = ei[k(x+4x)+ω(t+4t)] if 4x = +ω4t/k, this
plane wave travels to the right. Similarly, e−ikx → e−i(kx−ωt) is a plane wave that travels to
the left. So, ψ

E
(x) is a linear combination of two traveling waves. Indeed, the right-moving

probability current is

JR =
h̄

m
=m

[
ψ∗

E,R

d

dx
ψ

E,R

]
=

h̄

m
=m

[
e−ikx d

dx
eikx

]
=

h̄k

m
, (1.6)

and the left moving one is

JL =
h̄

m
=m

[
ψ∗

E,L

d

dx
ψ

E,L

]
=

h̄

m
=m

[
eikx d

dx
e−ikx

]
= − h̄k

m
, (1.7)

in both cases being identifiable as the velocity of the particle described by the wave-
function.

On the other hand, ψ
E,S

(x) = A cos(kx)+B sin(kx) = D sin(kx + δ) is a standing
wave, as the the latter two representations show. Indeed, its probability current is

JS =
h̄

m
=m

[
ψ∗

E,S

d

dx
ψ

E,S

]
=

h̄

m
=m

[
D∗ sin(kx+ δ)∗

d

dx
D sin(kx+ δ)

]
,

=
h̄

m
=m

[
|D|2 sin(kx+ δ)

(
−k cos(kx+ δ)

)]
,

= − h̄

2m
|D|2k=m

[
sin(2kx+ 2δ)

]
= 0 .

(1.8)

In fact, it is easy to see that any essentially real wave-function (that is, where the function
is real up to a multiplicative complex constant) yields a vanishing probability current.

Most importantly, this solution is oscillatory, with a constant wave number k, and
momentum p = h̄k. Thus, the left-moving plane wave corresponds to a particle with an
infinitely well defined momentum, the spatial position of which is however spread all over:
the probability density, |ψ

E
(x)|2, oscillates but is not significantly more or significantly less

in any one region than elsewhere. Such states are typically called scattering states (which
we’ll study more in Chapter 8).

Note that the wave number (‘spatial frequency’, inverse wavelength) is proportional to the
square-root of E−V (x).

—◦—

We have tacitly assumed that E > V = 0. Imagine replacing E → −E and con-
sider the effect on the wave-functions (1.3). With negative E, the wave number becomes
imaginary, k = iκ with h̄κ =

√

2m|E|, and we can write

ψ
−|E|

= D sin(iκx+ δ) = D
[
sin(δ) cosh(κx) + i cos(δ) sinh(κx)

]
. (1.9)

–2–
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ψ
E

E

V (x) = 0

ψ
4E

4E

V (x) = 0

Fig. 1: The constant potential.

Note that this wave-function is no longer oscillatory, but is (almost) monotonous instead.
However, such a wave-function cannot possibly be normalized, not even in the sense of
Eqs. (1.4) or (1.5); the normalization integrals

|D′|2
∫ ∞

−∞
dx | sinh(kx− δ′)|2 (1.10)

and

|D′|2
∫ ∞

−∞
dE′

∫ ∞

−∞
dx | sinh(kx− δ′)|2 (1.11)

are simply and incurably divergent for all nonzero D′.

1.2. Finite potential step

The next order of simplicity belongs to a simple ‘potential step’, where the potential is
defined to be

V (x) =

{
0 , for x < x0;

V0 , for x > x0.
(1.12)

We note that for either x < x0 or for x > x0, this looks like the previous case—the po-
tential is constant, and we adopt the corresponding solutions. This is indeed the standard
approach:

0. Fix the (next) value of E to be considered.

1. Divide the domain of x into contiguous regions where the energy is bigger than the
potential: R1 = {x:E > V (x)}, or smaller than the potential: R2 = {x:E > V (x)}.

2. Find the general solution of the Schrödinger equation in each region.

3. Match the solutions across the interfacing boundaries between adjacent regions.

4. Enforce boundary conditions ‘at infinity’.

5. Normalize the wave-function.

6. Go back to item 0.
—◦—

–3–
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Before we proceed with this task-list, we derive the general requirements to be used
in step 3. To that end, consider the Schrödinger equation rewritten as

d2ψ

dx2
≡ ψ′′(x) =

m

h̄2

[
V (x)− E

]
ψ , (1.13)

and think of it as determining the second derivative of the wave-function in terms of the
wave-function itself and the square of the wave number. We know that E is a constant
and that V (x) has a (finite) discontinuity; therefore, k2 = 2m

h̄2 [E−V (x)] also has a (finite)
discontinuity. If ψ is continuous, [V−E]ψ is discontinuous and so is ψ′′. However, since
this discontinuity is finite, upon integration: ψ′ =

∫
dx ψ′′ has no discontinuity and then

neither has ψ—consistent with our beginning assumption. Thus, we require:

lim
ε→0

ψ(x0−ε) = lim
ε→0

ψ(x0+ε) , (1.14a)

lim
ε→0

ψ′(x0−ε) = lim
ε→0

ψ′(x0+ε) . (1.14b)

Alternatively, once the equation (1.14a) has been enforced, we can divide the l.h.s. of
Eq. (1.14b) by the l.h.s of (1.14a), and the right-hand side of Eq. (1.14b) by the r.h.s.
of (1.14a) to obtain:

lim
ε→0

ψ′(x0−ε)
ψ(x0−ε)

= lim
ε→0

ψ′(x0+ε)

ψ(x0+ε)
,

lim
ε→0

ln
(
ψ(x0−ε)

)
= lim

ε→0
ln

(
ψ(x0+ε)

)
.

(1.14c)

Conversely: Assume now that ψ(x) has a (finite) discontinuity at x0, as does the potential,
V (x). Then, the right-hand-side of Eq. (1.13), the product

m

h̄2

[
V (x)−E

]
ψ(x), would also

have a (finite)discontinuity. However, ψ′(x) would have have an (infinite) discontinuity
at x0 (the slope is vertical!) and then ψ′′(x0), on the left-hand-side of Eq. (1.13), would
have to behave (at least) as badly as δ(x−x0) does—contradicting the established (finite)
discontinuity of the equation’s right-hand-side. To make this more obvious, notice that the
integral of the left-hand-side, equal to ψ′(x), would have an infinite discontinuity, whereas
the integral of the right-hand-side,

m

h̄2

[
V (x)−E

]
ψ(x), would have no discontinuity at all!

This contradiction proves that ψ(x) cannot be discontinuous as long as V (x) has a
discontinuity, including a finite or infinite “step” and even a δ-function type behavior.

—◦—

0. Consider first the case A: E > V0.

A.1. Following the above task-list, we define R1 = [−∞, x0] and R2 = [x0,∞].

A.2. Adopting the solution of subsection 1.1, we can write:

ψ1(x) = A1e
ik1x + B1e

−ik1x , k1 =
√

2mE/h̄ ; (1.15a)

ψ2(x) = A2e
ik2x + B2e

−ik2x , k2 =
√

2m(E−V0)/h̄ . (1.15b)

A.3 Here, we need to ensure that

ψ1(0) = ψ2(0) , ψ′1(0) = ψ′2(0) ; (1.16a)

A1 + B1 = A2 +B2 , ik1A1 − ik1B1 = ik2A2 − ik2B2 . (1.16b)

–4–
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A.4. Both ψ1 and ψ2 oscillate (with so far undetermined but constant amplitudes), and
there is no boundary condition “at infinity”.

A.5 The normalization/orthonormality condition (1.11) becomes

∫ ∞

−∞
dE′

[∫ 0

−∞
dx ψ∗

1,E′
ψ

1,E
+

∫ ∞

0

dx ψ∗
2,E′

ψ
2,E

]

= 1 . (1.17)

Thus, we remain with three equations: two in Eq. (1.16b) and one in Eq. (1.17) (upon

solving the integrals). These let us determine any three of the four constants A1, B1, A2, B2,
thus leaving one of these and the energy, E as free parameters of the solution. In partic-

ular, having remained undetermined, the energy E can take on any one of continuously

many values for E > V0. Also, note that the probability density |ψ|2 does not diminish

significantly outside any particular range of x. The solution for some particular value of

E is sketched in the left part of the figure below.

ψ
E

V (x)
E > V (x)

ψ
E

V (x)
V0

0 < E < V0

Fig. 2: The potential step.

Note that the probability current for the right-moving component of the wave-function
evaluates to h̄k1/m for x < 0 and h̄k2/m for x > 0; these indeed are the speeds of the

corresponding particle incoming from the left.

0. Consider next the case B: 0 < E < V0.

B.1. Following the above task-list, we keep R1 = [−∞, x0] and R2 = [x0,∞] from the

previous part.

B.2. Adapting the solution of subsection 1.1, we can write:

ψ1(x) = Aeikx + Be−ikx , k =
√

2mE/h̄ ; (1.18a)

ψ2(x) = Ceκx +De−κx , κ =
√

2m(V0−E)/h̄ . (1.18b)

–5–
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B.3 Again, we need to ensure that

ψ1(0) = ψ2(0) , ψ′1(0) = ψ′2(0) ; (1.19a)

A+ B = C +D , ikA− ikB = κC − κD . (1.19b)

B.4. Now ψ1 oscillates (with so far undetermined but constant amplitude), and there is
no boundary condition for x→ −∞. However, ψ2 is almost-monotonous and it is easy to
see that the Ceκx term diverges as x→∞, which would prevent normalization. Thus, in
view of this requirement, we must set C = 0.

B.5 The normalization/orthonormality condition (1.11) becomes
∫ ∞

−∞
dE′

[∫ 0

−∞
dx ψ∗

1,E′
ψ

1,E
+

∫ ∞

0

dx ψ∗
2,E′

ψ
2,E

]

= 1 . (1.20)

Thus, we remain with three equations: two in Eq. (1.19b) and one in Eq. (1.20) (upon
solving the integrals). These let us determine any three of the three constants A,B,D,
thus leaving none of these free. The energy however does remain as a free parameter of
the solution. In particular, having remained undetermined, the energy E can take on any
one of continuously many values for 0 < E < V0. Note again that the probability density
|ψ|2 does not diminish significantly outside any particular range of x < 0. The solution
for some particular value of E is sketched in the right part of the figure above.

Note that the probability current for the right-moving component of the wave-function
evaluates to h̄k/m for x < 0 but vanishes for x > 0. These indeed are the speeds of the
corresponding particle incoming from the left: the particle isn’t really allowed to travel
inside the barrier, although the wave-function there is non-zero.

The last logical possibility, E < 0 is excluded as the solution would turn out to
be non-normalizable just as in subsection 1.1. In summary, the (energy) spectrum is as
follows:







E > V0 , E is continuous, ψ(x) is oscillatory for all x;

0 < E < V0 , E is continuous, ψ(x) oscillatory for x < 0;

E < 0 , forbidden, since ψ(x) would not be normalizable.

1.3. Infinite discontinuities

By contrast, were the discontinuity in V (and so in k2) infinite, it would not have
been possible to derive that ψ′ should be continuous. Indeed, if we take the V0 →∞ limit,
when also κ→∞, we obtain that:

A. There is no analogue of the case A of the finite potential step: all (finite) energies E
must be smaller than V0 = ∞.

B. Case B is the only allowed one. The wave-function for x > 0 becomes ψ2(x) → 0, and
so we obtain that limε→0 ψ(−ε) = 0. This now becomes the new boundary condition.

—◦—

–6–
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An interesting special case of potentials with infinite discontinuities is the case when
the potential is V (x) = λδ(x). Now we can actually integrate the Schrödinger equation
between −ε and +ε:

0 = − h̄2

2m

∫ ε

−ε

dx
d2ψ

dx2
+ λ

∫ ε

−ε

dx δ(x)ψ −E
∫ ε

−ε

dx ψ , (1.21a)

= − h̄2

2m

[

ψ′(+ε)− ψ′(−ε)
]

+ λψ(0)−E
[

F (+ε)− F (−ε)
]

, (1.21b)

where F (x)
def
=

∫ x
dy ψ(y). Now, if ψ(x) is continuous at x = 0, so is F (x). Then, taking

the ε→ 0 limit, the terms in the right-most square bracket cancel, and we remain with

lim
ε→0

[

ψ(+ε)− ψ(−ε)
]

= 0 , lim
ε→0

[

ψ′(+ε)− ψ′(−ε)
]

=
2mλ

h̄2 ψ(0) , (1.22)

which are the boundary conditions for matching across a δ-function potential. That is, the
wave-functions must be continuous, but the first derivative has a discontinuity proportional
to the product of λ (a.k.a. ‘opacity’) and the value of the wave-function at 0; the wave-
function has a ‘breaking point’.

Now, if λ > 0, only E > 0 levels are allowed (for E < 0, no solution is normalizable).
Furthermore, the solutions to the left and to the right of the δ-function are oscillatory with
some finite and constant amplitudes. Thus there are no boundary conditions ‘at infinity’.

On the other hand, when λ < 0, both negative and positive values of E are allowed.
For E > 0, the solutions look very similar to the ones in the λ > 0 case (except now
the discontinuity in ψ′ has the opposite sign). For E < 0, however, a novel characteristic
appears! We proceed following the above task-list and find:

ψ−(x) = Ceκx , x < 0 , (1.23a)

ψ+(x) = De−κx , x > 0 , (1.23b)

where we set D = 0 in ψ− since e−κx diverges for x→ −∞, and similarly we set C = 0 in
ψ+ because eκx diverges as x → ∞. The boundary conditions (1.22) imply that C = D,
and that κ = mλ/h̄2. Since κ =

√

2m(−E)/h̄, we obtain that E = − 1
2mλ

2/h̄2. The
wave-function of this state monotonically decays to both positive and negative infinity,
and the probability density is non-negligible only around x = 0: this state is localized!
Since this localization is bound by the location of the potential, such states are also called
bound states. Below is a sketch of the wave-functions for a scattering and the bound state
in this case.

In summary, the (energy) spectrum is as follows:






E > 0 , E is continuous, ψ(x) is oscillatory for all x;

E = − 1
2
mλ2/h̄2 , a single value, separated from the continuous region, E > 0,

ψ(x) is exponentially decaying for x→ ±∞.

In particular, notice the appearance of the nonvanishing energy gap, between the lowest
lying energy value, E = − 1

2mλ
2/h̄2 and the continuous region, E > 0.

–7–
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ψ
E

V (x) = −|λ|δ(x)

E > 0

ψ
E

V (x) = −|λ|δ(x)

E = − 1
2mλ

2/h̄2

Fig. 3: The delta-function potential.

1.4. Finite potential two-step

Consider now an iteration of the finite potential step: stepping back-and-forth. There
are of course two possibilities, depicted in the figure below. In both cases, there are two
possibilities for the value of E: either E > max

(
V (x)

)
, or min

(
V (x)

)
< E < max

(
V (x)

)
.

For the potential barrier (left part of the above figure), both types of states are oscillatory
on both sides of the potential, have no boundary condition ‘ at infinity’, and represent
scattering states (continuous energy values).

V (x)

−a +a

V0 > 0

V (x)

−a +a

V0 < 0

Fig. 4: The potential barrier (left), and well (right).

For the potential well (right part of the above figure), the states with E > 0 are oscil-
latory throughout, no boundary conditions ‘at infinity’, and continuous values of energy.

–8–
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However, the states with V0 < E < 0 are monotonous for |x| > a, and so must decay for

x → ±∞—which imposes two additional boundary conditions. Together with matching

the wave-function and its derivative at ±a, these are six boundary conditions; in addition,

there is of course also the normalization condition. These are imposed on the solution

which has two constants in the region R1 = [−∞,−a], two for R2 = [−a,+a], and two for

R3 = [+a,+∞], and the energy level, E. This spells seven conditions on seven constants,

whence all seven are determined. Thus, energy will again only be able to take some select

values.

Let us work this out concretely. We write the solutions in the form:

ψ1 = Aeκx , x < −a , (1.24a)

ψ2 = B sin(kx+ δ) , |x| < a , (1.24a)

ψ3 = Ce−κx , x > +a , (1.24a)

with κ
def
=

√

2m|E|/h̄ and k
def
=

√

2m(E − V0)/h̄. The purpose for choosing these particular

forms of the solution will become apparent as soon as we apply the boundary conditions.

Indeed, let us focus on the logarithmic condition (1.14c):

Aκe−κa

Ae−κa
=
D[−k cos(−ka+ δ)]

D sin(−ka+ δ)
, @ x = −a (1.25a)

D[−k cos(ka+ δ)]

D sin(ka+ δ)
=
C[−κe−κa]

Ce−κa
, @ x = +a (1.25b)

Lo, and behold! These expressions simplify tremendously into:

κ = −k cot(−ka+ δ) , @ x = −a (1.26a)

k cot(ka+ δ) = κ . @ x = +a (1.26b)

Noting that cot(−x) = − cot(x) and recalling that cot(x) is periodic with period π, so that

the inverse function is defined only up to the addition of an arbitrary integral multiple of

π, this can be rewritten:

cot−1
(κ

k

)
= ka− δ + n1π , (1.27a)

cot−1
(κ

k

)
= ka+ δ + n2π , (1.27b)

the sum and the difference of which, respectively, yield:

cot−1
(k

κ

)
= ka+ 1

2
(n1+n2)π , δ = 1

2
(n1−n2)π , (1.28)

or, since cot(x+ Nπ
2 ) = − tan(x) for odd N but cot(x+ Nπ

2 ) = cot(x) for even N :

k

κ
=

{
tan(ka) for (n1+n2) even,

− cot(ka) = −1
tan(ka) for (n1+n2) odd.

(1.29)

–9–
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Notice that these involve only the energy—not one of the other constants appear:
√

E−V0

E
= ±

[

tan
(√

2m(E−V0)
a

h̄

)]±1

. (1.30)

Clearly, this is a transcendental equation for E, and cannot be solved explicitly or in closed
form. However, it can be solved graphically, by plotting the r.h.s. and the l.h.s. against E,
and finding the values of E for which the graphs cross. Numerically, one can employ the
halving method, the Newton-Raphson method, or any other method for finding the roots

of the functions f±(E)
def
=

√
E−V0

E
∓ [tan

(√

2m(E−V0)
a
h̄

)
]±1.

Without any calculation, it should be clear that the lowest value of E should be fairly
close to V0. Thus, one may expect to be able to estimate the ground state energy by

expanding the tangent function treating
√

E−V0

V0
as a small variable. To lowest nonzero

order, the result from the ‘tan’ branch of (1.29) is E = h̄2/2ma2, which is inconsistent as it
is independent of V0. To lowest nonzero order, the result from the ‘cot’ branch of (1.29) is

E = (V0 + h̄2

4ma2 )± h̄
a

√
V0

2m
+ h̄2

16m2a2 . This at least has the correct behavior in the classical

(h̄ → 0) limit: it becomes E = V0. Otherwise, the shift from this value is obtained as a
power series in h̄, and is therefore expected to be near V0.

Also without calculation, this model corresponds to there being no forces (equaling
the negative gradient of the potential) at x 6= ±a (the potential there being constant), and
the forces at x = ±a being ‘restorative’, i.e., pushing the particle back into the well. The
magnitude of these restorative forces at the boundary is proportional to the depth, V0.

In summary, the (energy) spectrum is as follows (recall, V0 < 0):






E > 0 , E is continuous, ψ(x) is oscillatory for all x;

V0 < E < 0 , E is discrete, the values determined by Eq. (1.30),
ψ(x) oscillatory for |x| < a but decays exponentially for x→ ±∞;

E < V0 , forbidden, since ψ(x) would not be normalizable.

—◦—

Now consider the infinite potential well, where we take the limit of V0 → −∞. It
would appear that the ground state energy also goes to −∞, which hardly makes sense! In
addition, the infinite potential well should physically correspond to no force inside the well
(the potential there being constant), with infinitely strong restorative forces (the depth of
the potential being infinite) at the boundary. Thus, the wave-function outside the potential
well should be identically zero. Yet, the above calculations show a continuum of scattering
states with E > 0) which extend outside the well!

Both of these problems are remedied by formally shifting the Hamiltonian by +|V0|
before taking the V0 → −∞ limit. That is, we consider Ĥ ′ = Ĥ + |V0| as the correct
Hamiltonian, so that the new potential becomes

V ′(x) =

{
+|V0| for |x| > a,

0 for |x| < a.
(1.31)

–10–
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The above results for the wave-functions and the condition determining the energy are
corrected in that now 0 < E < |V0|:

k =
√

2mE/h̄ , κ =
√

2m(|V0| − E)/h̄ , (1.32)

and Eq. (1.30) becomes
√

E

|V0| − E
= tan

(√
2mE

a

h̄

)

. (1.33)

Now the V0 → −∞ limit can be taken safely. Physically, the potential outside |x| < a
becomes infinitely big and prohibits the wave-functions there (the real exponentials decay
infinitely past as x becomes less than −a or more than +a). Mathematically, the l.h.s. of
Eq. (1.33) vanishes in the V0 →∞ limit, and we remain with the condition

tan
(√

2mE
a

h̄

)

= 0 ,
√

2mE
a

h̄
=

nπ

2
, (1.34)

and so

En =
n2π2h̄2

8ma2
. (1.35)

This could also have been derived from the boundary conditions, as follows. Since the
wave-functions must vanish for x ≤ −a and so also at x = −a, write

ψ(x) = D sin
[
k(x+a)

]
. (1.36)

Since the wave-function also has to vanish for x ≥ a and so also at x = a, we have that
k(2a) = nπ, which recovers Eq. (1.35).

In summary, the (energy) spectrum is as follows (recall, V0 < 0):






E > 0 , E is discrete, the values determined by Eq. (1.35),
ψ(x) oscillatory for |x| < a but vanishes for |x| ≥ a;

E < 0 , forbidden, since ψ(x) would not be normalizable.

By the way, the replacement Ĥ → Ĥ ′ before taking the V0 → ∞ limit is called
renormalization, and reflects the fact that energy is defined only up to an additive constant
(determining the choice of E = 0).

2. Continuous Potentials

In contrast with the previous section, we now assume that the potential is continuous in
the area of concern. In particular, that implies that the potential crosses the energy level
continuously—markedly unlike the cases in the previous section, whence also the matching
conditions (1.14) will no longer apply.

In two special cases, we will be able to obtain an exact complete set of solutions: the
(energy) spectrum and the corresponding Hilbert space. In full generality, however, we
will obtain an approximate solution, which however often turns out to be quite accurate.
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2.1. Linear potential

Consider the case where the potential is that of a constant force, V (x) = −F0x, so

that F
def
= − d

dx
V (x) = F0 = const. Now the Schrödinger equation is:

ψ′′(x) +
2m

h̄2 [F0x+ E]ψ(x) = 0 . (2.1)

Upon a Fourer transform and writing ψ̃(k)
def
= 1√

2π

∫ +∞
−∞ dxe−ikxψ(x), the Schrödinger

equation becomes 3):

[
(−ik)2ψ̃(k)

]
+

2mF0

h̄2

[
iψ̃′(k)

]
− 2mE

h̄2 ψ̃(k) = 0 ,

which is only a first order differential equation, which we solve straightforwardly:

ψ̃(k) = ψ̃0 exp
{

i
[ E

F0
k − h̄2k3

2mF0

]}

,

and readily invert back:

ψ
E
(x) =

1√
2π

∫ +∞

−∞
dk eikxψ̃(k) =

ψ̃0√
2π

∫ +∞

−∞
dk e

i[(x+ E
F0

)k− h̄2k3

2mF0
]
. (2.2)

Note that ψ
E+F0a

(x) = ψ
E
(x+a). This is a result of the continuous symmetry of the

problem (2.1): (E, x) ' (E − F0a, x+a), for all a ∈ IR. That is, the problem (2.1) and

its solutions remain unchanged if we shift (E, x) → (E − F0a, x+a), so that a translation

x → (x+a) is accompanied by an overall (global) re-zeroing of energy E → (E−F0a).

This is indeed a very simple example of a gauge-invariance, wherein the translation of

a coordinate is compensated by re-gauging an observable (resetting the value of “zero

energy” in this case).

For each fixed value of E, Eq. (2.2) provides an exact solution albeit given in integral

form. It turns out to be oscillatory for x > −E/F0 (where E>V (x) = −F0x) and exponen-

tially decaying for x < −E/F0. The “other” solution of the 2nd order ODE (2.1) (which

is of Sturm-Liouville type) is obtained using standard techniques. It is exponentially di-

verging for x< − E/F0 and so physically unacceptable. These two special functions (for

each E) are called the Airy functions, and are discussed in many texts on mathematical

physics.

2.2. Quadratic potential

Another case for which exact solutions are obtained with relative ease is the so-called

(linear) harmonic oscillator: V (x) = 1
2mω

2x2, where we used the classical mechanics result

to write the spring constant as mω2 with ω the natural frequency of the oscillator.

3) Do work out F [ψ′′(x)] and F [xψ(x)] for yourself, please!
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The Hamiltonian, Ĥ = p̂2

2m
+ 1

2mω
2x̂2 leads to a 2nd order ODE for stationary states

in coordinate representation:

− h̄2

2m
ψ′′(x) + 1

2mω
2x2ψ(x) = Eψ(x) ,

which can be solved directly using Frobenius’s method of series. However, we will solve
this case herein using another method, exposing its algebraic structure.

We begin by changing variables:

â
def
=

√
mω
2h̄
x̂+ i√

2mωh̄
p̂ , and â†

def
=

√
mω
2h̄
x̂− i√

2mωh̄
p̂ ,

and so also

x̂ =
√

2h̄
mω

<e(â) =
√

h̄
2mω

(
â†+â

)
, and p̂ =

√
2h̄mω=m(â) = i

√
mωh̄

2

(
â†−â

)
.

It is easy to verify that [x̂, p̂] = ih̄ implies
[
â, â†

]
= 1l , (2.3a)

from which
ââ† = 1l + â†â , and â†â = ââ† − 1l . (2.3b, c)

The (canonical) commutation relations (2.3) define the Heisenberg algebra

In terms of â, â†, we have that

Ĥ = 1
2
h̄ω

(
â†â+ ââ†

)
= h̄ω(â†â+ 1

2
) .

This means that the Hamiltonian of the harmonic oscillator is a shift and a re-scale of
the operator N̂

def
= â†â: eigenvalues of Ĥ, i.e., energies are E = h̄ω(ν+ 1

2 ) where ν is the

eigenvalue of N̂ , and eigenstates of N̂ are also eigenstates of Ĥ:

N̂ |ν〉 = ν |ν〉 ⇔ Ĥ |ν〉 = h̄ω(ν+ 1
2 ) |ν〉 .

Our goal then is to determine the allowed values of ν, and the corresponding states |ν〉.
As all observables of the harmonic oscillator can be expressed in terms of â and â†,

we start with determining how these operators act on the |ν〉’s. In particular, consider the
state â |n〉, and determine if it is another eigenstate of N̂ :

N̂
(
â |ν〉

)
= â†ââ |ν〉 (2.3c)

= (ââ† − 1)â |ν〉 = ââ†â |ν〉 − â |ν〉 ,

= âν |ν〉 − â |ν〉 = (n−1)
(
â |ν〉

)
,

which means that â |ν〉 is itself an eigenstate of N̂ , corresponding to the eigenvalue ν−1,
so that in fact â |ν〉 ∝ |ν−1〉. A similar calculation proves that also â† |ν〉 ∝ |ν+1〉.

Thus, â and â†, respectively decrease and increase ν in units of 1. Since all observables
are functions of â, â†, that means that the Hilbert space of the harmonic oscillator consists
of |ν〉’s with ν changing in integral increments only. Furthermore, since E ≥ min

(
V (x)

)
=

0, we also know that

0 ≤ Eν = h̄ω(ν+ 1
2) implies ν ≥ − 1

2 .
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Since ν can change only in integral increments, we can write

ν = ν0 + n , where − 1
2 ≤ ν0 <

1
2 and n = 0, 1, 2, 3 . . .

and where ν0 is a fixed constant. (The “initial” constant ν0 can always be reduced to this
interval by re-scaling n by an integer. conversely, all allowed values of ν can be obtained
using this parametrization.)

Now we turn to determine ν0. Since N̂ |ν〉 = ν |ν〉, we have that:

〈ν0|N̂ |ν0〉 = 〈ν0|ν0|ν0〉 = ν0〈ν0|ν0〉 = ν0 ,
‖

〈ν0| â†â |ν0〉 =
(
â |ν0〉

)†(
â |ν0〉

)
=

∣
∣â |ν0〉

∣
∣
2 ≥ 0 ,

so that ν ≥ 0. Thus, we have just halved the set of possible values of ν0, from − 1
2 ≤ ν0 <

1
2

to 0 ≤ ν0 <
1
2
. But, if

∣
∣â |ν0〉

∣
∣
2
> 0, then (â |ν0〉) would be a state of positive norm, and

would have to be included in the Hilbert space. This however cannot be the case, since
(â |ν0〉) ∝ |ν0−1〉 would have to have the energy

Eν0−1 = h̄ω
(
(ν0−1) + 1

2) = h̄ω(ν0 − 1
2 ) < 0 = min

(
V (x)

)
,

since ν0 <
1
2 . Such states are not normalizable and must be excluded from the Hilbert

space.

Therefore, only the value ν0 = 0 remains a consistent choice. From now on, we will
write |n〉 in place of |ν〉. Also, it follows that

â |0〉 = 0 (2.4)

defines the state of the lowest energy, E0 = 1
2 h̄ω, which we will call the “ground state”

from now on.
—◦—

Given |0〉, all the other states are created by iterative applications of â†:

|1〉 ∝ â† |0〉 , . . . so |n〉 ∝ (â†)n |0〉 .
It remains to normalize these correctly. To that end, write |n〉 = Cn(â†)n |0〉 and note that

1
!
= 〈n|n〉 =

∣
∣ |n〉

∣
∣
2

=
∣
∣Cn(â†)n |0〉

∣
∣
2

=
∣
∣Cnâ

† (â†)n−1 |0〉
︸ ︷︷ ︸

C
−1

n−1
|n−1〉

∣
∣
2

=
|Cn|2
|Cn−1|2

∣
∣â† |n−1〉

∣
∣
2
,

=
|Cn|2
|Cn−1|2

〈n−1|ââ†|n−1〉 =
|Cn|2
|Cn−1|2

〈n−1|[â†â+ 1]|n−1〉 ,

=
|Cn|2
|Cn−1|2

〈n−1|[(n−1) + 1]|n−1〉 =
|Cn|2
|Cn−1|2

n〈n−1|n−1〉 =
|Cn|2
|Cn−1|2

n .

so that (choosing the Cn’s to be real):

Cn =
Cn−1√
n

, ⇒ Cn =
1√
n!

.
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Thus, all states |n〉 for n = 1, 2, 3 . . . are completely determined from the ground state, |0〉.
We note that

â† |n〉 =
√
n+1 |n+1〉 and â |n〉 =

√
n |n−1〉 . (2.5)

This then produces the whole Hilbert space,

H =
{
|n〉 , n− 0, 1, 2, 3 . . . : 〈n|n′〉 = δn,n′ &

∑

n |n〉 〈n| = 1l
}
.

and –since all observables, Â, can be expressed in terms of â and â†– the action of all
observables on all states, and so also all matrix elements 〈n′|Â|n〉 can be determined using
this algebraic formalism.

It is of paramount importance to realize that the structure of the Hilbert space, H,
–and all results within it– are completely!!! determined by the Heisenberg algebra (2.3).

—◦—

Furthermore, the formalism also permits to easily solve for the wave-functions of all
|n〉. To that end, begin with rewriting Eq. (2.4) in the coordinate representation:

0 = 〈x| â |0〉 =
[√

mω
2h̄
x̂+ i√

2mωh̄
p̂
]
ψ0(x) =

[√
mω
2h̄
x+ i√

2mωh̄

h̄

i

d

dx

]

ψ0(x) ,

which may be simplified:

ψ′0(x) = −mω
h̄
xψ0(x) , ⇒ ψ0(x) = C0e

− 1
2
βx2

, β =
mω

h̄
.

Normalizing,

1
!
=

∫ +∞

−∞
dx |ψ0(x)|2 = 2|C0|2

∫ ∞

0

dxe−βx2

= |C0|2
√
π

β
,

so that

ψ0(x) = 4

√
mω

πh̄
e−

1
2
βx2

,

and then

ψn(x) =
(â†)n

√
n!
ψ0(x) .

Up to normalization, the polynomials

Hn(x)
def
=

1

ψ0(x)
√
n!

(â†)nψ0(x)

are recognized to be the Hermite polynomials, obtained otherwise also through the Frobe-
nius’s method of series.

2.3. Solutions for a general potential: the WKB approximation

We seek a solution of the Schroödinger equation in the exponential form, ψ(x) =

e
i
h̄

u(x). By direct substitution, the Schrödinger equation becomes
[ 1

2m

(du

dx

)2

− ih̄

2m

d2u

dx2
+ [V (x)− E]

]

e
i
h̄

u(x) = 0 . (2.6)
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As e
i
h̄

u(x) 6= 0, this we rewrite as

ih̄
d2u

dx2
=

(du

dx

)2

− p2 , p = p(x)
def
=

√

2m[E−V (x)] . (2.7)

This differential equation is definitely more complicated than the standard Schrödinger
equation—it is neither linear nor homogeneous. However, precisely its nonlinearity enables
us to set up and iterative solution in the form of a sequence {u0, u1, . . .} which hopefully
converges to the true solution. Fortunately, at least in many cases of interest, already
u1(x) will turn out to be a quite useful (approximate) solution.

We begin the iteration by neglecting the second derivative (since h̄ is so small) and
solve

0 =
(du0

dx

)2

− p2 , (2.8)

which is easy: u0 = ±
∫

dxp(x) + C0. Upon this, we will iteratively solve

dun+1

dx
= ±

√

ih̄
d2un

dx2
+ p2 , n = 0, 1, 2 . . . (2.9)

Thus,

du1

dx
= ±

√

i
d2u0

dx2
+ p2 = ±

√

ih̄
dp

dx
+ p2 ≈ ±p

(

1± ih̄

2

p′

p

)

, (2.10)

which is solved by u1 ≈ ±
∫

dxp+ ih̄
2 ln p. That is, we have (k

def
= p/h̄)

ψ1(x) =
A

√

k(x)
ei

∫
dx k(x) +

B
√

k(x)
e−i

∫
dx k(x) , V (x) < E , (2.11)

which is called the WKB solution. Note that for constant V (x), k is also a constant,
and upon redefining the constant and so far undetermined amplitudes to include 1/

√
k,

this becomes precisely the plane wave (exact!) solution of the previous section. Thus,
heuristically, the WKB solution is expected to be accurate for ‘slowly varying’ potentials.

Of course, where the values of the potential are bigger than the energy level E, we

substitute k → iκ
def
= i

√

2m(V (x)−E)/h̄, and write the solution in the form

ψ1(x) =
C

√

κ(x)
e−

∫
dx κ(x) +

D
√

κ(x)
e
∫

dx κ(x) , V (x) > E , (2.12)

2.4. Matching conditions for a general potential

The trouble with deriving matching conditions is that both the oscillatory (2.11), and
the monotonous solution (2.12) diverge at any classical turning point x0, where V (x0) = E.
Thus, it does not make a lot of sense to compare the wave-functions and their derivatives
at the turning point. Instead, one needs a ‘patch’—a well-defined wave-function which is a
good approximation precisely at the turning point and in some small neighborhood around
it. Such a ‘patching’ wave-function is found by approximating the potential by a linear
function, V (x0+ε) ≈ E+V ′0x. Substituting this into the Schrödinger equation yields the
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Airy equation, and the required patching solutions are therefore the Airy functions. This
is described in some detail on p.284–289 of Ref. [1]. Full details, and a slightly different
derivation of the solutions (2.11) and (2.12), are found on p.164–170 of Ref. [2].

In any case, the matching conditions depend on whether the barrier (the region where
V (x)>E) is to the left or to the right. In the former case, with the barrier to the left, we
have [3]:

A = 1
2
ϑC + ϑ∗D , B = 1

2
ϑ∗C + ϑD . (2.13)

For the barrier to the right, we have

A = ϑC + 1
2
ϑ∗D , B = ϑ∗C + 1

2
ϑD . (2.14)
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