Howard University

WASHINGTON, D.C. 20059

DEPARTMENT OF PHYSICS AND ASTRONOMY

Quantum Mechanics I
Quizz

2355 Sixth Str., NW, TKH Rm. 215 thubsch@howard.edu (202)-806-6257

Fall '98.
Solutions (T. Hübsch)

1. Find the asymptotic behavior of the wave-function for a particle moving (in 3 dimensions) under the influence of the central potential $V(r)=\lambda r^{2 n}$.
(Show all work below this line; use overleaf if necessary.)
The potential being independent of angles, we write the Schrödinger equation in spherical variables, and with $\psi(r, \theta, \phi)=R(r) Y_{\ell}^{m}(\theta, \phi)$. The $Y_{\ell}^{m}(\theta, \phi)$ are just the spherical harmonics, i.e., the eigenfunctions of the angular momentum operator $\hat{\vec{L}}^{2}$ with eigenvalue $\ell(\ell+1)$. Since $\vec{\nabla}^{2}=\frac{1}{r} \frac{\partial^{2}}{\partial r^{2}} r-\frac{1}{r^{2}} \hat{\vec{L}}^{2}$, the Schrödinger equation becomes

$$
\begin{equation*}
\frac{1}{r} \frac{\mathrm{~d}^{2}}{\mathrm{~d} r^{2}}(r R(r))-\left[\frac{\ell(\ell+1)}{r^{2}}-\frac{2 m E}{\hbar^{2}}+\frac{2 m \lambda}{\hbar^{2}} r^{2 n}\right] R(r)=0 \tag{1}
\end{equation*}
$$

For $n>0$ and large r, we have (with the $u \stackrel{\text { def }}{=} r R(r)$ substitution)

$$
\begin{equation*}
u^{\prime \prime}-\frac{2 m \lambda}{\hbar^{2}} r^{2 n} u \approx 0 \tag{2}
\end{equation*}
$$

This is (approximately) solved by $u \sim \exp \left\{-\sqrt{2 m \lambda} r^{n+1} / \hbar\right\}$, so that

$$
\begin{equation*}
R(r) \sim \frac{1}{r} e^{-\sqrt{2 m \lambda} r^{n+1} / \hbar}, \quad r \rightarrow \infty \tag{3}
\end{equation*}
$$

For $n=0$, the calculation and the result are almost the same, with $\lambda \rightarrow(\lambda-E)$.
Amusingly, when $n<0$, the asymptotic behavior of the wave-function for large r no longer depends on λ. For negative n, the potential approaches zero as $r \rightarrow \infty$, while the E-term remains constant, and so dominates. Thus, for $n<0, R(r) \sim \frac{1}{r} e^{-\sqrt{-2 m E} r^{n+1}} / \hbar$, which is exponentially decaying for negative energies, and oscillatory for positive energies since then $\sqrt{-2 m E}=i \sqrt{2 m|E|}$.
\qquad
2. Find the condition(s) on the wave-functions for the operator $\hat{\overrightarrow{\mathcal{L}}} \stackrel{\text { def }}{=} \hat{\vec{r}} \times \hat{\vec{p}}=\frac{\hbar}{i} \vec{r} \times \vec{\nabla}$ to be hermitian
(Show all work below this line; use overleaf if necessary.)
We will prove the questioned equality below, by working on the right hand side:

$$
\begin{align*}
\int_{V} \mathrm{~d}^{3} \vec{r} \psi_{i}^{*} \hat{\overrightarrow{\mathcal{L}}} \psi_{j} & \stackrel{?}{=} \int_{V} \mathrm{~d}^{3} \vec{r}\left(\hat{\overrightarrow{\mathcal{L}}} \psi_{i}\right)^{*} \psi_{j}=\int_{V} \mathrm{~d}^{3} \vec{r}\left(\frac{\hbar}{i} \vec{r} \times \vec{\nabla} \psi_{i}\right)^{*} \psi_{j} \tag{4a}\\
& =-\frac{\hbar}{i} \int_{V} \mathrm{~d}^{3} \vec{r}\left(\vec{r} \times \vec{\nabla} \psi_{i}^{*}\right) \psi_{j}=\frac{\hbar}{i} \int_{V} \mathrm{~d}^{3} \vec{r}\left(\vec{\nabla} \psi_{i}^{*}\right) \times \vec{r} \psi_{j} \tag{4b}\\
& =\frac{\hbar}{i} \int_{V} \mathrm{~d}^{3} \vec{r} \vec{\nabla} \times\left(\psi_{i}^{*} \vec{r} \psi_{j}\right)-\frac{\hbar}{i} \int_{V} \mathrm{~d}^{3} \vec{r} \psi_{i}^{*}\left(\vec{\nabla} \times \vec{r} \psi_{j}\right) \tag{4c}\\
& =\frac{\hbar}{i} \oint_{S=\partial V} \mathrm{~d}^{2} \vec{\sigma} \times\left(\psi_{i}^{*} \vec{r} \psi_{j}\right)-\frac{\hbar}{i} \int_{V} \mathrm{~d}^{3} \vec{r} \psi_{i}^{*}\left(\vec{\nabla} \psi_{j}\right) \times \vec{r} \tag{4d}\\
& =\frac{\hbar}{i} \oint_{S=\partial V} \mathrm{~d}^{2} \vec{\sigma} \times\left(\psi_{i}^{*} \vec{r} \psi_{j}\right)+\frac{\hbar}{i} \int_{V} \mathrm{~d}^{3} \vec{r} \psi_{i}^{*}\left(\vec{r} \times \vec{\nabla} \psi_{j}\right) \tag{4e}\\
& =\frac{\hbar}{i} \oint_{S=\partial V} \mathrm{~d}^{2} \vec{\sigma} \times\left(\psi_{i}^{*} \vec{r} \psi_{j}\right)+\int_{V} \mathrm{~d}^{3} \vec{r} \psi_{i}^{*}\left(\hat{\overrightarrow{\mathcal{L}}} \psi_{j}\right) . \tag{4f}
\end{align*}
$$

Comparing the left hand side of (4a) with the right hand side of $(4 f)$, we conclude that $\hat{\overrightarrow{\mathcal{L}}}$ is hermitian if and only if

$$
\begin{equation*}
\frac{\hbar}{i} \oint_{S=\partial V} \mathrm{~d}^{2} \vec{\sigma} \times\left(\psi_{i}^{*} \vec{r} \psi_{j}\right)=0 \tag{5}
\end{equation*}
$$

Wave-functions satisfying this boundary condition form the hermiticity domain of the operator $\hat{\overrightarrow{\mathcal{L}}}$. That is, the operator $\hat{\overrightarrow{\mathcal{L}}}$ is hermitian as long as it acts on wave-functions which satisfy the boundary condition (5).
\qquad
3. Given an unitary operator \hat{U} which squares to $\mathbb{1}$, what are the possible eigenvalues? [=20pt]

If you cannot anser in general, try (for 10 pts) to determine the possible eigenvalues of the "time reversal" operator, $\hat{T}: t \rightarrow-t$. (See p. 154-155.)
(Show all work below this line; use overleaf if necessary.)
Let $\hat{U}|n\rangle=u_{n}|n\rangle$ be the 'eigenvalue-eigenfunction' equation for the unitary operator \hat{U}, where n simply counts the eigenfunctions $|n\rangle$ and the corresponding eigenvalues, u_{n}. While it is straightforward to ensure that all $|n\rangle$ are normalized to unity, it is important to notice that the set $\{|n\rangle\}$ is not necessarily complete. Nevertheless, we can write:

$$
\begin{align*}
1=\langle n| \mathbb{1}|n\rangle & =\langle n| \hat{U}^{2}|n\rangle=\langle n| \hat{U} \hat{U}|n\rangle, \tag{6a}\\
& =\langle n| \hat{U}\left(u_{n}|n\rangle\right)=u_{n}\langle n| \hat{U}|n\rangle, \tag{6b}\\
& =u_{n}\langle n| u_{n}|n\rangle=u_{n}^{2}\langle n||n\rangle, \tag{6b}
\end{align*}
$$

whence there are precisely two (not fewer, not more) eigenvalues:

$$
\begin{equation*}
\left(u_{n}\right)^{2}=1, \quad \Rightarrow \quad u_{1}=+1, \quad u_{2}=-1 \tag{7}
\end{equation*}
$$

Clearly, we can rename them into $u_{ \pm}= \pm 1$, and write

$$
\begin{equation*}
\hat{U}| \pm\rangle= \pm| \pm\rangle \tag{8}
\end{equation*}
$$

By the same token, for an operator $\hat{\Omega}_{N}$ that satisfies $\left(\hat{\Omega}_{N}\right)^{N}=\mathbb{1}$, we have that precisely the N complex number of absolute value 1

$$
\begin{equation*}
\omega_{n}=e^{2 i n \pi / N}, \quad n=0,1, \ldots,(N-1) . \tag{9}
\end{equation*}
$$

are the eigenvalues. Of these, only $\hat{\Omega}_{2}$ has real eigenvalues, and so only $\hat{\Omega}_{2}$ is hermitian; the other $\hat{\Omega}_{N}$'s are not.
\qquad
4. Using Ehrenfest's theorem, $\frac{\mathrm{d}}{\mathrm{d} t}\langle\hat{Q}\rangle=\left\langle\frac{i}{\hbar}[\hat{H}, \hat{Q}]\right\rangle+\left\langle\frac{\partial \hat{Q}}{\partial t}\right\rangle$ and with the Hamiltonian $\hat{H}=\frac{1}{2 m} \hat{p}^{2}+V(x)$, derive that:

$$
m \frac{\mathrm{~d}}{\mathrm{~d} t}\langle\hat{x}\rangle=\langle\hat{p}\rangle, \quad \text { and } \quad \frac{\mathrm{d}}{\mathrm{~d} t}\langle\hat{p}\rangle=-\left\langle\frac{\mathrm{d} V}{\mathrm{~d} x}\right\rangle .
$$

(Show all work below this line; use overleaf if necessary.)
Start with $\hat{Q}=\hat{x}$ and work on the right-hand-side of Ehrenfest's theorem:

$$
\begin{align*}
\frac{\mathrm{d}}{\mathrm{~d} t}\langle\hat{x}\rangle & =\left\langle\frac{i}{\hbar}[\hat{H}, \hat{x}]\right\rangle+\left\langle\frac{\partial \hat{x}}{\partial t}\right\rangle=\frac{i}{\hbar}\left\langle\left[\frac{1}{2 m} \hat{p}^{2}, x\right]\right\rangle+\frac{i}{\hbar}\langle[V(x), x]\rangle \tag{10a}\\
& =\frac{i}{2 m \hbar}[\langle\hat{p}[\hat{p}, x]\rangle+\langle[\hat{p}, x] \hat{p}\rangle]=\frac{i}{2 m \hbar}\langle 2(-i \hbar) \hat{p}\rangle=\frac{1}{m}\langle\hat{p}\rangle, \tag{10b}
\end{align*}
$$

where in the first line we used that \hat{x} does not explicitly depend on time, and that any function of x only must commute with \hat{x}^{1}. In the second statement, we used the commutator identity $[A B, C]=A[B, C]+[A, C] B$.

Now set $\hat{Q}=\hat{p}$, and use that neither does \hat{p} depend explicitly on time:

$$
\begin{align*}
\frac{\mathrm{d}}{\mathrm{~d} t}\langle\hat{p}\rangle & =\left\langle\frac{i}{\hbar}[\hat{H}, \hat{p}]\right\rangle+\left\langle\frac{\partial \hat{p}}{\partial t}\right\rangle=\frac{i}{\hbar}\left\langle\left[\frac{1}{2 m} \hat{p}^{2}, \hat{p}\right]\right\rangle+\frac{i}{\hbar}\langle[V(x), \hat{p}]\rangle \tag{11a}\\
& =\frac{i}{\hbar}\left[\left\langle\left[V(x), \frac{\hbar}{i} \frac{\mathrm{~d}}{\mathrm{~d} x}\right]\right\rangle\right]=-\left\langle\frac{\mathrm{d} V}{\mathrm{~d} x}\right\rangle \tag{11b}
\end{align*}
$$

The last line may be easiest to see if one applies the commutator $\left[V(x), \frac{\mathrm{d}}{\mathrm{d} x}\right]$ to an arbitrary function $f(x)$, so that $\left[V, \frac{\mathrm{~d}}{\mathrm{~d} x}\right] f=V\left(\frac{\mathrm{~d}}{\mathrm{~d} x} f\right)-\left(\frac{\mathrm{d}}{\mathrm{d} x} V f\right)=-\left(\frac{\mathrm{d}}{\mathrm{d} x} V\right) f$. We have also used throughout the distributivity of the commutator with addition: $[A+B, C]=[A, C]+[B, C]$.
${ }^{1}$ Just expand the function into a power series and verify the statement term by term.
\qquad
5. a. Consider a system in a state described by the wave-function $\psi(x)=A \mathrm{e}^{-\alpha|x|}$ for $|x|<\infty$. Normalize the (constant) amplitude A.
b. Calculate the expected measurement of the observable represented by $\hat{Q}=x^{2}$ in this system.
(Show all work below this line; use overleaf if necessary.)
By definition, $\int \mathrm{d} x|\psi(x)|^{2}=1$, so we calculate:

$$
\begin{align*}
\int \mathrm{d} x|\psi(x)|^{2} & =\int_{-\infty}^{\infty} \mathrm{d} x A^{*} \mathrm{e}^{-\alpha^{*}|x|} A \mathrm{e}^{-\alpha|x|}=\int_{-\infty}^{\infty} \mathrm{d} x|A|^{2} \mathrm{e}^{-2 \Re e(\alpha)|x|} \tag{12a}\\
& =2|A|^{2} \int_{0}^{\infty} \mathrm{d} x \mathrm{e}^{-2 \Re e(\alpha)|x|}=2|A|^{2} \frac{\Gamma\left(\frac{0+1}{1}\right)}{1[2 \Re e(\alpha)]^{0+1}} \tag{12b}\\
& =2|A|^{2} \frac{\Gamma(1)}{2 \Re e(\alpha)}=\frac{|A|^{2}}{\Re e(\alpha)} \stackrel{!}{=} 1, \tag{12b}
\end{align*}
$$

whereby $|A|=\sqrt{\Re e(\alpha)}$. Note that the (complex) phase of A cannot be determined.
For the expectation value,

$$
\begin{align*}
\left\langle x^{2}\right\rangle & =\int_{-\infty}^{\infty} \mathrm{d} x A^{*} \mathrm{e}^{-\alpha^{*}|x|} x^{2} A \mathrm{e}^{-\alpha|x|}=\Re e(\alpha) \int_{-\infty}^{\infty} \mathrm{d} x x^{2} \mathrm{e}^{-2 \Re e(\alpha)|x|} \tag{13a}\\
& =2 \Re e(\alpha) \int_{0}^{\infty} \mathrm{d} x x^{2} \mathrm{e}^{-2 \Re e(\alpha)|x|}=2 \Re e(\alpha) \frac{\Gamma\left(\frac{2+1}{1}\right)}{1[2 \Re e(\alpha)]^{2+1}} \tag{13b}\\
& =2 \Re e(\alpha) \frac{\Gamma(3)}{8[\Re e(\alpha)]^{3}}=\frac{2!}{4[\Re e(\alpha)]^{2}}=\frac{1}{2[\Re e(\alpha)]^{2}} . \tag{13b}
\end{align*}
$$

\qquad
6. Let ψ satisfy the Schrödinger equation, $i \hbar \frac{\partial \psi}{\partial t}=-\frac{\hbar^{2}}{2 m} \vec{\nabla}^{2} \psi+(V+i \hat{\Sigma}) \psi$, where V and $\hat{\Sigma}$ are real. Defining as usual $\rho \stackrel{\text { def }}{=}|\psi|^{2}$ and $\vec{\jmath} \stackrel{\text { def }}{=} \frac{\hbar}{2 i m}\left[\psi^{*} \vec{\nabla} \psi-\left(\vec{\nabla} \psi^{*}\right) \psi\right]$, derive the modified 'continuity equation' and interpret $\hat{\Sigma}$.
(Show all work below this line; use overleaf if necessary.)
The continuity equation involves the time derivative of ρ, so that's what we start with:

$$
\begin{align*}
\frac{\partial \rho}{\partial t} & =\frac{\partial \psi^{*}}{\partial t} \psi+\psi^{*} \frac{\partial \psi}{\partial t} \\
& =-\frac{1}{i \hbar}\left[-\frac{\hbar^{2}}{2 m} \vec{\nabla}^{2} \psi^{*}+(V-i \hat{\Sigma}) \psi^{*}\right] \psi+\psi^{*} \frac{1}{i \hbar}\left[-\frac{\hbar^{2}}{2 m} \vec{\nabla}^{2} \psi+(V+i \hat{\Sigma}) \psi\right] \tag{14}\\
& =\frac{\hbar}{2 i m}\left[\left(\vec{\nabla}^{2} \psi^{*}\right) \psi-\psi^{*}\left(\vec{\nabla}^{2} \psi\right)\right]+\frac{2}{\hbar} \psi^{*} \hat{\Sigma} \psi_{;} \\
& =\frac{\hbar}{2 i m} \vec{\nabla} \cdot\left[\left(\vec{\nabla} \psi^{*}\right) \psi-\psi^{*}(\vec{\nabla} \psi)\right]+\frac{2}{\hbar} \psi^{*} \hat{\Sigma} \psi
\end{align*}
$$

so that

$$
\begin{equation*}
\frac{\partial \rho}{\partial t}=\vec{\nabla} \cdot \vec{\jmath}+\frac{2}{\hbar} \psi^{*} \hat{\Sigma} \psi \tag{15}
\end{equation*}
$$

is the modified continuity equation. Integrated over a volume V, this becomes:

$$
\begin{equation*}
\frac{\mathrm{d}}{\mathrm{~d} t} P_{V}=\oint_{S=\partial V} \mathrm{~d} \vec{\sigma} \cdot \vec{\jmath}+\frac{2}{\hbar}\langle\psi| \hat{\Sigma}|\psi\rangle_{V} \tag{16}
\end{equation*}
$$

where $\langle\psi| \Sigma|\psi\rangle_{V} \stackrel{\text { def }}{=} \int_{V} \mathrm{~d}^{3} \vec{r} \psi^{*} \hat{\Sigma} \psi$ is the expectation value of $\hat{\Sigma}$, restricted however to the volume V and $P_{V} \stackrel{\text { def }}{=}\langle\psi| \hat{\mathbf{1}}|\psi\rangle$ is the probability of finding the particle inside volume $V ; S$ is the surface bounding the volume V.

Thus, the rate of change of the probability of finding the particle inside the volume V equals the flux of the probability current through the bounding surface S, plus the restricted expectation value of the operator $\hat{\Sigma}$. If positive; $\langle\psi| \hat{\Sigma}|\psi\rangle_{V}$ would be deemed a source of such particles; if negative, $\langle\psi| \hat{\Sigma}|\psi\rangle_{V}$ would act as a sink (absorber).
7. For the wave-function $\psi=C z e^{-\beta r}$, with $z=r \cos \theta$, (a) find the eigenvalues of \hat{L}_{z} and \hat{L}^{2}, and (b) determine the normalization constant.
a. As given in class, and also found in the appendix 3 on p.569, $\hat{L}_{z}=-i \frac{\partial}{\partial \varphi}$. Since ψ is independent of φ, the \hat{L}_{z}-eigenvalue must vanish; $m=0$. Another way to see this is to use Cartesian variables where $\hat{L}=-i\left(x \frac{\partial}{\partial y}-y \frac{\partial}{\partial x}\right)$. Now, z is manifestly a constant with respect to this first order derivative operator. That $e^{-\beta r}$ is also a constant follows from the fact that \hat{L}_{z} generates rotations about the z-axis, while r and so $e^{-\beta r}$ is a scalar and so does not transform under rotations.
\qquad
Now, as for \hat{L}^{2}, we can again use the expression on spherical coordinates (p.569):

$$
\hat{L}^{2}=-\left[\frac{1}{\sin \theta} \frac{\partial}{\partial \theta} \sin \theta \frac{\partial}{\partial \theta}+\frac{1}{\sin ^{2} \theta} \frac{\partial^{2}}{\partial \varphi^{2}}\right]
$$

where again the $\frac{\partial^{2}}{\partial \varphi^{2}}$-term contributes nothing as ψ is independent of φ. The first term produces

$$
\begin{aligned}
\hat{L}^{2} C z e^{-\beta r} & =-\frac{1}{\sin \theta} \frac{\partial}{\partial \theta} \sin \theta \frac{\partial}{\partial \theta} C z e^{-\beta r}=-C e^{-\beta r} \frac{1}{\sin \theta} \frac{\partial}{\partial \theta} \sin \theta \frac{\partial}{\partial \theta} r \cos \theta, \\
& =-C r e^{-\beta r} \frac{1}{\sin \theta} \frac{\partial}{\partial \theta} \sin \theta(-\sin \theta)=C r e^{-\beta r} \frac{1}{\sin \theta} \frac{\partial}{\partial \theta}\left(\sin ^{2} \theta\right), \\
& =2 C r e^{-\beta r} \frac{1}{\sin \theta} \sin \theta \cos \theta=2 C r \cos \theta e^{-\beta r}=2 \psi_{r}
\end{aligned}
$$

so that the \hat{L}^{2}-eigenvalue is 2 , and $\ell=1$. Another way is to use that $\hat{L}^{2}=\sum_{i} \hat{L}_{i}{ }^{2}$ in Cartesian coordinates. Again, on the scalar $e^{-\beta r}, \hat{L}^{2}$ gives zero. As discussed and derived in class $\left[\hat{L}_{j}, x^{k}\right]=\left(\hat{L}_{j} x^{k}\right)=i \epsilon_{j k l} x^{l}$, so that ${ }^{2}$

$$
\begin{aligned}
\sum_{j=1}^{3} \hat{L}_{j}^{2} x^{k} & =\sum_{j=1}^{3}\left(\hat{L}_{j}\left(\hat{L}_{j} x^{k}\right)\right)=\sum_{j=1}^{3}\left[\hat{L}_{j},\left[\hat{L}_{j}, x^{k}\right]\right]=\sum_{j=1}^{3}\left[\hat{L}_{j},\left(i \epsilon_{j k l} x^{l}\right)\right] \\
& =\sum_{j=1}^{3} i \epsilon_{j k l}\left[\hat{L}_{j}, x^{l}\right]=\sum_{j, l=1}^{3} i \epsilon_{j k l}\left(i \epsilon_{j l m} x^{m}\right)=-\sum_{j, l=1}^{3} \epsilon_{j k l} \epsilon_{j l m} x^{m} \\
& =-\left(\sum_{j, l=1}^{3}\left(-\epsilon_{j l k}\right) \epsilon_{j l m}\right) x^{m}=\left(2 \delta_{m}^{k}\right) x^{m}=2 x^{k}
\end{aligned}
$$

Therefore, $\hat{L}^{2} \psi=C e^{-\beta r} \hat{L}^{2} z=C e^{-\beta r}(2 z)=2 \psi$, so $\ell=1$.
Note in particular, that (with \hat{D} any linear and first order differential operator):

$$
\begin{aligned}
\hat{D}^{2} f(x) & =(\hat{D}(\hat{D} f(x)))=[\hat{D},[\hat{D}, f(x)]] \\
& \neq\left[\hat{D}^{2}, f(x)\right]=(\hat{D}(\hat{D} f(x)))+2(\hat{D} f(x)) \hat{D}
\end{aligned}
$$

b. Normalization is straightforward:

$$
\begin{aligned}
& 1 \stackrel{!}{=} \int \mathrm{d}^{3} \vec{r}|\psi|^{2}=|C|^{2} \int_{0}^{\infty} r^{2} \mathrm{~d} r \int_{0}^{\pi} \sin \theta \mathrm{d} \theta \int_{0}^{2 \pi} \mathrm{~d} \varphi r^{2} \cos ^{2} \theta e^{-2 \beta r} \\
& \quad=|C|^{2} \int_{0}^{\infty} \mathrm{d} r r^{4} e^{-2 \beta r} \int_{-1}^{1} \mathrm{~d}(\cos \theta) \cos ^{2} \theta \int_{0}^{2 \pi} \mathrm{~d} \varphi \\
& \quad=|C|^{2}\left[\frac{\Gamma(5)}{(2 \beta)^{5}}\right]\left[\frac{u^{3}}{3}\right]_{-1}^{1}[2 \pi]=|C|^{2}\left[\frac{4!}{32 \beta^{5}}\right]\left[\frac{2}{3}\right][2 \pi]=|C|^{2}\left[\frac{\pi}{\beta^{5}}\right]
\end{aligned}
$$

[^0]\qquad
whence $C=\sqrt{\beta^{5} / \pi}$. Here, we used the standard trick in evaluating the θ-integrals: the volume integral measure contains $\sin \theta \mathrm{d} \theta=-\mathrm{d}(\cos \theta)$, which suggests the change of variables $u=\cos \theta$, whereupon the integral is a table one ${ }^{3}$. The radial integral is a special case of the frequently used Γ-function integral found on p. 558 of the text, under "Some Useful Integrals". Note that
$$
\int_{0}^{\infty} \mathrm{d} x x^{n} e^{-(a x)^{m}}=\frac{\Gamma\left(\frac{n+1}{m}\right)}{m a^{\frac{n+1}{m}}}
$$
is in fact an analytic function of a, m, n except: (1) when $m=0,(\mathbf{2})$ when $a^{\frac{n+1}{m}}=0$, and (3) when $\frac{n+1}{m}$ is a negative integer. Many of the "radial" integrals are of this type, or can be reduced to this.

[^1]
[^0]: ${ }^{2}$ Summation is implied over subscript-superscript index pairs.

[^1]: ${ }^{3}$ Be careful with the limits of integration; $u(\theta=0)=1$ and $u(\theta=\pi)=-1$.

