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Quantum Mechanics I Fall ’98.

Quizz Solutions (T. Hübsch)

1. Find the asymptotic behavior of the wave-function for a particle moving (in 3 dimen-

sions) under the influence of the central potential V (r) = λr2n. [=10pt]

(Show all work below this line; use overleaf if necessary.)

The potential being independent of angles, we write the Schrödinger equation in spher-

ical variables, and with ψ (r, θ, φ) = R(r)Y m
` (θ, φ). The Y m

` (θ, φ) are just the spherical

harmonics, i.e., the eigenfunctions of the angular momentum operator ~̂L
2

with eigenvalue

`(`+1). Since ~∇2 = 1
r

∂2

∂r2 r − 1
r2

~̂L
2
, the Schrödinger equation becomes

1

r

d2

dr2

(
rR(r)

)
−

[`(`+1)

r2
−

2mE

h̄2 +
2mλ

h̄2 r2n
]
R(r) = 0 . (1)

For n > 0 and large r, we have (with the u
def
= rR(r) substitution)

u′′ − 2mλ

h̄2
r2nu ≈ 0 . (2)

This is (approximately) solved by u ∼ exp{−
√

2mλrn+1/h̄}, so that

R(r) ∼ 1

r
e−

√
2mλrn+1/h̄ , r → ∞ . (3)

For n = 0, the calculation and the result are almost the same, with λ → (λ−E).

Amusingly, when n < 0, the asymptotic behavior of the wave-function for large r no

longer depends on λ. For negative n, the potential approaches zero as r → ∞, while the

E-term remains constant, and so dominates. Thus, for n < 0, R(r) ∼ 1
r
e−

√
−2mErn+1/h̄,

which is exponentially decaying for negative energies, and oscillatory for positive energies

since then
√
−2mE = i

√
2m|E|.
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2. Find the condition(s) on the wave-functions for the operator ~̂L def
= ~̂r×~̂p = h̄

i ~r×~∇ to be

hermitian [=10pt]

(Show all work below this line; use overleaf if necessary.)

We will prove the questioned equality below, by working on the right hand side:

∫

V

d3~r ψ ∗
i

~̂L ψ j
?
=

∫

V

d3~r ( ~̂L ψ i)
∗ ψ j =

∫

V

d3~r (
h̄

i
~r×~∇ ψ i)

∗ ψ j (4a)

= −
h̄

i

∫

V

d3~r (~r×~∇ψ ∗
i ) ψ j =

h̄

i

∫

V

d3~r (~∇ ψ ∗
i )×~r ψ j (4b)

=
h̄

i

∫

V

d3~r ~∇×(ψ ∗
i ~r ψ j) −

h̄

i

∫

V

d3~r ψ ∗
i (~∇×~r ψ j) (4c)

=
h̄

i

∮

S=∂V

d2~σ×( ψ ∗
i ~r ψ j) −

h̄

i

∫

V

d3~r ψ ∗
i (~∇ ψ j)×~r (4d)

=
h̄

i

∮

S=∂V

d2~σ×( ψ ∗
i ~r ψ j) +

h̄

i

∫

V

d3~r ψ ∗
i (~r×~∇ ψ j) (4e)

=
h̄

i

∮

S=∂V

d2~σ×( ψ ∗
i ~r ψ j) +

∫

V

d3~r ψ ∗
i ( ~̂L ψ j) . (4f)

Comparing the left hand side of (4a) with the right hand side of (4f ), we conclude that ~̂L
is hermitian if and only if

h̄

i

∮

S=∂V

d2~σ×( ψ ∗
i ~r ψ j) = 0 . (5)

Wave-functions satisfying this boundary condition form the hermiticity domain of the

operator ~̂L. That is, the operator ~̂L is hermitian as long as it acts on wave-functions which

satisfy the boundary condition (5).
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3. Given an unitary operator Û which squares to 1l, what are the possible eigenvalues? [=20pt]

If you cannot anser in general, try (for 10pts) to determine the possible eigenvalues

of the “time reversal” operator, T̂ : t → −t. (See p. 154–155.)

(Show all work below this line; use overleaf if necessary.)

Let Û |n〉 = un |n〉 be the ‘eigenvalue-eigenfunction’ equation for the unitary operator

Û , where n simply counts the eigenfunctions |n〉 and the corresponding eigenvalues, un.

While it is straightforward to ensure that all |n〉 are normalized to unity, it is important

to notice that the set {|n〉} is not necessarily complete. Nevertheless, we can write:

1 = 〈n| 1l |n〉 = 〈n| Û2 |n〉 = 〈n| Û Û |n〉 , (6a)

= 〈n| Û
(
un |n〉

)
= un 〈n| Û |n〉 , (6b)

= un 〈n| un |n〉 = u2
n 〈n| |n〉 , (6b)

whence there are precisely two (not fewer, not more) eigenvalues:

(un)2 = 1 , ⇒ u1 = +1 , u2 = −1 . (7)

Clearly, we can rename them into u± = ±1, and write

Û |±〉 = ± |±〉 . (8)

By the same token, for an operator Ω̂N that satisfies (Ω̂N )N = 1l, we have that

precisely the N complex number of absolute value 1

ωn = e2inπ/N , n = 0, 1, . . . , (N−1) . (9)

are the eigenvalues. Of these, only Ω̂2 has real eigenvalues, and so only Ω̂2 is hermitian;

the other Ω̂N ’s are not.

–3–
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4. Using Ehrenfest’s theorem, d
dt
〈Q̂〉 = 〈 i

h̄

[
Ĥ, Q̂

]
〉 + 〈 ∂Q̂

∂t
〉 and with the Hamiltonian

Ĥ = 1
2m p̂2 + V (x), derive that:

m
d

dt
〈x̂〉 = 〈p̂ 〉 , and

d

dt
〈p̂ 〉 = −〈

dV

dx
〉 .

(Show all work below this line; use overleaf if necessary.)

Start with Q̂ = x̂ and work on the right-hand-side of Ehrenfest’s theorem:

d

dt
〈x̂〉 = 〈

i

h̄

[
Ĥ, x̂

]
〉 + 〈

∂x̂

∂t
〉 =

i

h̄
〈
[ 1

2m
p̂2, x

]
〉 +

i

h̄
〈
[
V (x), x

]
〉 , (10a)

=
i

2mh̄

[
〈p̂

[
p̂, x

]
〉 + 〈

[
p̂, x

]
p̂〉

]
=

i

2mh̄
〈2(−ih̄)p̂〉 =

1

m
〈p̂〉 , (10b)

where in the first line we used that x̂ does not explicitly depend on time, and that any func-

tion of x only must commute with x̂1. In the second statement, we used the commutator

identity [AB, C] = A[B,C] + [A,C]B.

Now set Q̂ = p̂, and use that neither does p̂ depend explicitly on time:

d

dt
〈p̂〉 = 〈

i

h̄

[
Ĥ, p̂

]
〉 + 〈

∂p̂

∂t
〉 =

i

h̄
〈
[ 1

2m
p̂2, p̂

]
〉 +

i

h̄
〈
[
V (x), p̂

]
〉 , (11a)

=
i

h̄

[〈[
V (x),

h̄

i

d

dx

]〉]
= −

〈dV

dx

〉
. (11b)

The last line may be easiest to see if one applies the commutator
[
V (x), d

dx

]
to an arbitrary

function f(x), so that
[
V, d

dx

]
f = V

(
d
dxf

)
−

(
d
dxV f

)
= −

(
d
dxV

)
f . We have also used

throughout the distributivity of the commutator with addition: [A+B,C] = [A,C]+[B,C].

1 Just expand the function into a power series and verify the statement term by term.
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5. a. Consider a system in a state described by the wave-function ψ (x) = Ae−α|x| for

|x|<∞. Normalize the (constant) amplitude A. [=5pt.]

b. Calculate the expected measurement of the observable represented by Q̂ = x2 in this

system. [=5pt.]

(Show all work below this line; use overleaf if necessary.)

By definition,
∫

dx |ψ (x)|2 = 1, so we calculate:

∫
dx |ψ (x)|2 =

∫ ∞

−∞
dx A∗e−α∗|x|Ae−α|x| =

∫ ∞

−∞
dx |A|2e−2<e(α)|x| (12a)

= 2|A|2
∫ ∞

0

dx e−2<e(α)|x| = 2|A|2
Γ( 0+1

1 )

1 [2<e(α)]0+1
(12b)

= 2|A|2
Γ(1)

2<e(α)
=

|A|2

<e(α)
!
= 1 , (12b)

whereby |A| =
√

<e(α). Note that the (complex) phase of A cannot be determined.

For the expectation value,

〈x2〉 =

∫ ∞

−∞
dx A∗e−α∗|x| x2 Ae−α|x| = <e(α)

∫ ∞

−∞
dx x2e−2<e(α)|x| (13a)

= 2<e(α)

∫ ∞

0

dx x2e−2<e(α)|x| = 2<e(α)
Γ(2+1

1
)

1 [2<e(α)]2+1
(13b)

= 2<e(α)
Γ(3)

8[<e(α)]3
=

2!

4[<e(α)]2
=

1

2[<e(α)]2
. (13b)
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6. Let ψ satisfy the Schrödinger equation, ih̄ ∂ψ
∂t = − h̄2

2m
~∇2 ψ + (V + iΣ̂) ψ , where V and Σ̂

are real. Defining as usual ρ
def
= |ψ |2 and ~

def
= h̄

2im
[ψ ∗~∇ ψ − (~∇ ψ ∗) ψ ], derive the modified

‘continuity equation’ and interpret Σ̂. [=10pt]

(Show all work below this line; use overleaf if necessary.)

The continuity equation involves the time derivative of ρ, so that’s what we start with:

∂ρ

∂t
=

∂ψ ∗

∂t
ψ + ψ ∗ ∂ψ

∂t
,

= − 1

ih̄

[
− h̄2

2m
~∇2 ψ ∗ + (V − iΣ̂) ψ ∗

]
ψ + ψ ∗ 1

ih̄

[
− h̄2

2m
~∇2 ψ + (V + iΣ̂) ψ

]
,

=
h̄

2im

[
(~∇2 ψ ∗)ψ − ψ ∗(~∇2 ψ )

]
+

2

h̄
ψ ∗Σ̂ψ ,

=
h̄

2im
~∇·

[
(~∇ ψ ∗) ψ − ψ ∗(~∇ψ )

]
+

2

h̄
ψ ∗Σ̂ψ ,

(14)

so that
∂ρ

∂t
= ~∇·~ +

2

h̄
ψ ∗Σ̂ ψ (15)

is the modified continuity equation. Integrated over a volume V , this becomes:

d

dt
PV =

∮

S=∂V

d~σ·~ +
2

h̄
〈 ψ |Σ̂| ψ 〉V , (16)

where 〈ψ |Σ|ψ 〉V
def
=

∫
V

d3~rψ ∗Σ̂ ψ is the expectation value of Σ̂, restricted however to the

volume V and PV
def
= 〈 ψ |1̂| ψ 〉 is the probability of finding the particle inside volume V ; S

is the surface bounding the volume V .

Thus, the rate of change of the probability of finding the particle inside the volume

V equals the flux of the probability current through the bounding surface S, plus the

restricted expectation value of the operator Σ̂. If positive; 〈ψ |Σ̂|ψ 〉V would be deemed a

source of such particles; if negative, 〈ψ |Σ̂|ψ 〉V would act as a sink (absorber).

7. For the wave-function ψ = C z e−βr, with z = r cos θ, (a) find the eigenvalues of L̂z and

L̂2, and (b) determine the normalization constant.

a. As given in class, and also found in the appendix 3 on p.569, L̂z = −i ∂
∂ϕ

. Since ψ is

independent of ϕ, the L̂z-eigenvalue must vanish; m = 0. Another way to see this is

to use Cartesian variables where L̂ = −i(x ∂
∂y − y ∂

∂x ). Now, z is manifestly a constant

with respect to this first order derivative operator. That e−βr is also a constant follows

from the fact that L̂z generates rotations about the z-axis, while r and so e−βr is a

scalar and so does not transform under rotations.

–6–
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Now, as for L̂2, we can again use the expression on spherical coordinates (p.569):

L̂2 = −
[ 1

sin θ

∂

∂θ
sin θ

∂

∂θ
+

1

sin2 θ

∂2

∂ϕ2

]
,

where again the ∂2

∂ϕ2 -term contributes nothing as ψ is independent of ϕ. The first term

produces

L̂2 C z e−βr = −
1

sin θ

∂

∂θ
sin θ

∂

∂θ
C z e−βr = −C e−βr 1

sin θ

∂

∂θ
sin θ

∂

∂θ
r cos θ ,

= −C r e−βr 1

sin θ

∂

∂θ
sin θ(− sin θ) = C r e−βr 1

sin θ

∂

∂θ
(sin2 θ) ,

= 2C r e−βr 1

sin θ
sin θ cos θ = 2C r cos θ e−βr = 2 ψ ,

so that the L̂2-eigenvalue is 2, and ` = 1. Another way is to use that L̂2 =
∑

i L̂ 2
i in

Cartesian coordinates. Again, on the scalar e−βr, L̂2 gives zero. As discussed and derived
in class [L̂j , x

k] = (L̂j xk) = iεjklx
l, so that2

3∑

j=1

L̂ 2
j xk =

3∑

j=1

(
L̂j(L̂j xk)

)
=

3∑

j=1

[
L̂j ,

[
L̂j , xk

]]
=

3∑

j=1

[
L̂j , (iεjklx

l)
]

,

=

3∑

j=1

iεjkl

[
L̂j , xl

]
=

3∑

j,l=1

iεjkl(iεjlmxm) = −
3∑

j,l=1

εjklεjlm xm ,

= −
( 3∑

j,l=1

(−εjlk)εjlm

)
xm = (2δk

m)xm = 2xk.

Therefore, L̂2 ψ = Ce−βrL̂2z = Ce−βr(2z) = 2 ψ , so ` = 1.

Note in particular, that (with D̂ any linear and first order differential operator):

D̂2f (x) =
(
D̂

(
D̂ f (x)

))
=

[
D̂ ,

[
D̂ , f(x)

] ]
,

6=
[
D̂2 , f(x)

]
=

(
D̂

(
D̂ f (x)

))
+ 2

(
D̂ f (x)

)
D̂ ,

b. Normalization is straightforward:

1
!
=

∫
d3~r | ψ |2 = |C|2

∫ ∞

0

r2dr

∫ π

0

sin θdθ

∫ 2π

0

dϕ r2 cos2 θe−2βr ,

= |C|2
∫ ∞

0

dr r4e−2βr

∫ 1

−1

d(cos θ) cos2 θ

∫ 2π

0

dϕ ,

= |C|2
[ Γ(5)

(2β)5

][u3

3

]1

−1

[
2π

]
= |C|2

[ 4!

32β5

][2

3

][
2π

]
= |C|2

[ π

β5

]
,

2 Summation is implied over subscript–superscript index pairs.
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whence C =
√

β5/π. Here, we used the standard trick in evaluating the θ-integrals:

the volume integral measure contains sin θdθ = −d(cos θ), which suggests the change

of variables u = cos θ, whereupon the integral is a table one3. The radial integral is

a special case of the frequently used Γ-function integral found on p.558 of the text,

under “Some Useful Integrals”. Note that

∫ ∞

0

dx xne−(ax)m

=
Γ(n+1

m )

ma
n+!
m

is in fact an analytic function of a, m, n except: (1) when m = 0, (2) when a
n+1

m = 0,

and (3) when n+1
m is a negative integer. Many of the “radial” integrals are of this

type, or can be reduced to this.

3 Be careful with the limits of integration; u(θ=0) = 1 and u(θ=π) = −1.
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