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2nd Midterm Exam Solutions (T. Hübsch)

1. Before we continue, note that the “Cartesian” wave-functions |m,n〉 = Cm,ne−
1
2 β2(x2+y2)Hm(βx)Hn(

are the stationary wave-functions, i.e., the eigenfunctions of the Hamiltonian, and with
eigenvalues Em,n = h̄ω(m+n+1). We will need those that have E = 4h̄ω, whence
m+n = 3, which are:

|3, 0〉 , |2, 1〉 , |1, 2〉 , |0, 3〉 .

a. It is easy to see that Ẑ 2
2 = 1l, all of the eigenvalues of which are +1. Obviously, it

is easiest to calculate Ẑ 2
2 in a basis where Ẑ2 iteself is diagonal—in an eigenbasis. But

then, Ẑ2 is a diagonal matrix, with eigenvalues on the diagonal; for Ẑ 2
2 , these eigenvalues

become squared, and we know must be equal to +1. Hence, all eigenvalues of Ẑ2 square
to +1, and so can only be ±1. This is clearly true for any operator which squares to 1l: its
eigenvalues must be ±1.

b. Since Ẑ2 simply swaps x ↔ y, its action on the “Cartesian” wave-functions is
Ẑ2 |m, n〉 = |n, m〉. Among the wave-functions of our interest, we have

Ẑ2 |3, 0〉 = |0, 3〉 , Ẑ2 |0, 3〉 = |3, 0〉 ; (1a)

Ẑ2 |1, 2〉 = |2, 1〉 , Ẑ2 |2, 1〉 = |1, 2〉 . (1b)

Clearly then, the eigenvectors and eigenvalues of Ẑ2 are

|3, 0;±〉 def
= 1√

2

[
|3, 0〉 ± |0, 3〉

]
, z±3,0 = ±1 ; (2a)

|1, 2;±〉 def
= 1√

2

[
|1, 2〉 ± |2, 1〉

]
, z±1,2 = ±1 . (2b)

(Acting on any of these kets, Ẑ2 produces the indicated eigenvalue.)

c. As a 90◦-rotation in the x-y-plane, R̂4 acts as R̂4: (x, y) 7→ (y,−x). It is easy to see
that R̂ 2

4 = −1l. Arguing as in part a., the eigenvalues of R̂4 thus must square to −1. Thus,
the eigenvalues of R̂4 must be ±i.

d. Since the Hermite polynomials obey Hn(−βx) = (−1)nHn(βx), the action on the
“Cartesian” wave-functions is R̂4 |m,n〉 = (−1)m |n, m〉. Among the wave-functions of our
interest, we have

R̂4 |3, 0〉 = − |0, 3〉 , R̂4 |0, 3〉 = + |3, 0〉 ; (3a)

R̂4 |1, 2〉 = − |2, 1〉 , R̂4 |2, 1〉 = + |1, 2〉 . (3b)

The eigenvectors and corresponding eigenvalues of R̂4 are then

|0, 3;±〉 def
= 1√

2

[
|0, 3〉 ± i |3, 0〉

]
, r±0,3 = ∓i ; (4a)

|2, 1;±〉 def
= 1√

2

[
|2, 1〉 ± i |1, 2〉

]
, r±2,1 = ∓i ; (4b)
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2. For this Hydrogen-like system, the Hamiltonian will be 1
2m ~̂p − e′2

r

[
1 + e−3r/a0

]
.

a. Writing − e′2

r

[
1 + e−3r/a0

]
= − e′2

r + Ĥ(1), it follows that Ĥ(1) = −e′2(e−3r/a0

r ). We

note that the screening function e−3r/a0 rapidly vanishes: already at r = a0/2 (half the
Bohr radius), the screening function is just a bit over 22%; at r = a0 (the Bohr radius),
its less than 5%; at r = 1.5375a0, it’s less than 1%.

b. This perturbation will mix different states—those with same angular dependence
(since Ĥ (1) is independent of angles). That is to say, the correction to a given (unper-
turbed) wave-function will be a linear combination of all (unperturbed) wave-functions
with same angular dependence. Since the wave-functions represent states, this is what is
meant by saying that the perturbation mixes states. Indeed, already the first correction
to the wave-function

|n, `,m〉(1) =
∑

n′ 6=n

[ (0)〈n′, `,m|Ĥ(1)|n, `,m〉(0)

E(0)

n′ − E(0)
n

]
|n′, `,m〉(0) (5)

is non-zero in general, since the matrix elements will be non-zero for some n′ 6= n. The
corrected wave-functions will then be mixtures of unperturbed wave-functions of different
energies but same angular dependence (same `,m).

c. Yes, one can use the ‘non-degenerate perturbation theory’, although the system is
degenerate. This is because the sum in (5) extends only over states of the same angular
dependence but different prinicipal quantum number. For each principal quantum number
(and so each energy level) there is only one state with any one fixed angular dependence
(`,m). Thus, no two states ocurring in the sum (5) have the same energy, and no denom-
inator vanishes.

d. The first order correction to energy equals (0)〈n, `, m|Ĥ (1)|n, `, m〉(0), which yields, for
the ground state:

(0)〈1, 0, 0|Ĥ(1)|1, 0, 0〉(0) = −
e′

2

πa3
0

∫ ∞

0

r2dr

∫ π

0

sin θdθ

∫ 2π

0

e−r/a0
e−3r/a0

r
e−r/a0

= −4πe′
2

πa3
0

∫ ∞

0

dr r e−5r/a0 = −4e′
2

a3
0

(a0

5

)2

1! = −4
e′

2

25a0
,

(6)

after changing variables, t = 2
a0

r in the first, and t = ( 2
a0

+ξ)r in the second integral, and
then using the Γ-function integral on p.558. Finally, in the last row, the fraction has been
expanded in small ξ, keeping only the lowest order term.

e. The first order correction to the energy E2,0,0 equals

(0)〈2, 0, 0|Ĥ (1)|2, 0, 0〉(0) = −
e′

2

2a3
0

∫ ∞

0

dr r e−2r/a0
(
1−

r

2a0

)2
(e−3r/a0 ) ,

= −
e′

2

2a3
0

∫ ∞

0

dr r e−5r/a0

[
1 −

r

a0
+

r2

4a2
0

]
,

= −
e′

2

2a3
0

[(a0

5

)2

1! −
1

a0

(a0

5

)3

2! +
1

4a2
0

(a0

5

)4

3!
]

= −
1

4

e′
2

25a0
.

(7)
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f. Note that |E(1)

2,0,0| = 1
16 |E

(1)

1,0,0|—to first order, the first excited level is shifted only 1
16

of the shift to the ground state. This happens for a good reason: the perturbation Ĥ(1)

is exponentially decaying with growing distance from the origin and clearly affects more
those states which are better localized around the origin. A quick glance at Fig. 6.8 will
verify that this is indeed the case with lower states. Thus, the perturbation shifts lower
states more than higher ones. Therefore, we expect E171,0,0 to be shifted much, much less
than E1,0,0 and E2,0,0.

3. Notice that the perturbation Ĥ(1) = −eE0 sin(πx/L) is antisymmetric with respect to
the reflection R̂:x 7→ −x. That implies that the diagonal matrix elements W++ and W−−
vanish for each k separately. However, the off-diagonal matrix elements (n = 1, 2, . . .)

W+−
def
= −eE0

2

L

∫ +L/2

−L/2

dx cos(kx) sin(πx/L) sin(kx) , k =
2nπ

L
, (8)

are nonzero; manifestly, W+− = W−+.

a. It should then be clear from Eq. (7.12b) that the degeneracy will be lifted, as the
discriminant under square-root is nonzero. Also, more generally, note that R |k,±〉 =
± |k,±〉, but the perturbation Ĥ (0) and so the perturbed (total) Hamiltonian Ĥ = Ĥ (0) +
Ĥ (1) does not commute with the reflection operator R̂: Ĥ(1)R̂ = −R̂Ĥ(1). This implies
that the new eigenfunctions will no longer be degenerate.

b. Changing variables to ϕ = 2πx/L and using the trigonometric addition formulae:

W+−
def
= −eE0

4π

∫ +π

−π

dϕ
[
cos

(
4n−1

2
ϕ

)
− cos

(
4n+1

2
ϕ
)]

,

= −eE0

4π

[ 4

4n−1
+

4

4n+1

]
= −eE0

4π

8n

16n2−1
.

(9)

and W+− = W−+, whereupon Eq. (7.19b) produces

E±
n = E(0)

n ±
√

|W+−|2 =
2h̄2n2π2

mL2
±

eE0L

π

8n

16n2−1
. (10)

Notice that while the energy without the perturbation is proportional to the square of
the wave-vector (and so also of the mode number n), the first order correction is inversely
proportional to the wave-vector (mode number): E(1)∼ 1

n
. Thus, the energy of the lowest-

lying states are corrected more than the energies of the higher, excited states.
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