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2nd Midterm Exam Solutions T. Hübsch

DISCLAIMER: This solution set presents more detail than was required of the Student, and is
meant as an additional resource for learning. Please do study not just the solutions as presented,
but try also to understand the rationale behind the approach. Although none of the questions
pertained to the linear harmonic oscillator and the â, â† operator formalism per se, much of the
calculations in this test are related to it. This also means that you will probably have a good
opportunity to show off your â, â†-mastery on the Final, where it will count twice as much.

1. For a particle of mass M moves freely within a box (as in HW#4.2) of size L:

a. calculate 4P =

√
〈n|(~P − 〈n|P̂ |n〉)2|n〉, the indeterminacy of observing P̂ .

Solution .

For the particle in a box (using the results of HW#4.2),

〈n′|Ô|n〉 =

∫
dxψ∗n′(x)Ôψn(x) =

2

π

∫ L

0

dx sin
(
n′π xL

)
Ô sin

(
nπ xL

)
.

Therefore (using φ = π
Lx),

〈n|P̂ |n〉 =
2h̄

iL

∫ L

0

dx sin(nπ xL )
d

dx
sin(nπ xL ) = −2nh̄

iL

∫ π

0

dφ sin(nφ) cos(nφ) ,

= −nh̄
iL

∫ π

0

dφ sin(2nφ) = 0 .

Then: [=10pt]

4P = 〈n|(P̂ − 〈n|P̂ |n〉)2|n〉 = 〈n|P̂ 2|n〉 = −2h̄2

L

∫ L

0

dx sin(nπ xL )
d2

dx2
sin(nπ xL ) ,

=
n2π2h̄2

L2

2

π

∫ π

0

dφ sin2(nφ) =
n2π2h̄2

L2
.

In fact, quite a bit more can be calculated using the integrals given in the test:

〈n′|P̂ |n〉 =
2h̄

iL

∫ L

0

dx sin(n′π x
L

)
d

dx
sin(nπ x

L
) =

2h̄

iL

∫ L

0

dx sin(n′π x
L

)
[
(−nπ

L
) cos(nπ x

L
)
]
,

= −
2nh̄

iL

∫ π

0

dφ sin(n′φ) cos(nφ) = −
2n2h̄

iL

{
1−(−1)n+m

(n−m)(n+m)
, if n′ 6=n,

0 , if n′=n;

= −
4n2h̄

iL

{
1

n2−m2 , if n′±n is odd,

0 , if n′±n is even.
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Also:

〈n′|P̂ 2|n〉 = −
2h̄2

π

∫ L

0

dx sin(n′π x
L

)
d2

dx2
sin(nπ x

L
) = −

2h̄2

π

∫ L

0

dx sin(n′π x
L

)
[
(−n

2π2

L2 ) sin(nπ x
L

)
]
,

=
n2π2h̄2

L2

2

π

∫ π

0

dφ sin(n′φ) sin(nφ) =
n2π2h̄2

L2
δn′,n ,

b. Calculate 4E , the indeterminacy of observing Ĥ. Compare with 4P and explain.
Solution .

Since Ĥ = 1
2M P̂ 2, 4H = 1

2M4P = n2h̄2π2

2ML2 . Note that this indeterminacy in fact

equals the value of the nth energy level: En = n2h̄2π2

2ML2 , so that, for a particle in a box, the

energy of the nth state is predicted to be En ± En = En(1± 1)! [=5pt]

c. Calculate the expectation value 〈n| 12 (Q̂P̂ + P̂ Q̂)|n〉 for all n.
Solution .

First, use [Q̂, P̂ ] = ih̄ to simplify:

〈n′| 12 (Q̂P̂ + P̂ Q̂)|n〉 = 〈n′| 12 (Q̂P̂ − ih̄)|n〉 = 1
2 〈n
′|Q̂P̂ |n〉 − i

2 h̄δn′,n .

So, now:

〈n′|Q̂P̂ |n〉 =
2h̄

iL

∫ L

0

dx sin(n′π xL )x
d

dx
sin
(
nπ xL

)
=

2h̄

iL

∫ L

0

dx sin
(
n′π xL )x

[
(−nπL ) cos(nπ xL )

]
,

= −nh̄
i

2

π

∫ π

0

dφ sin
(
n′φ)φ cos(nφ) =

nh̄

i

{
2n(−1)n+m

(n−m)(n+m)

)
, if n′ 6=n,

1
2n , if n′=n.

Therefore, 〈n| 12 (Q̂P̂ + P̂ Q̂)|n〉 = h̄
2i + h̄

2i = −ih̄. [=15pt]

2. Consider a particle of mass M , moving freely within a 2-dimensional box, specified by

the potential W (x, y) = 0 if |x|, |y|<L but W (x, y) =∞ otherwise.

a. Specify the boundary conditions on the wave-function (if any) and state the nature

(discrete/continuous) of the energy spectrum.
Solution .

The boundary conditions on ψ(x, y) are as follows:

ψ(x, y) = 0 , if |x−L2 | ≥
L
2 or |y−L2 | ≥

L
2 ,

that is, ψ(x, y) = 0 when (x, y) are outside the square x, y ∈ (0, L). [=10pt]

b. Using separation of Cartesian coordinates, determine the energy levels in terms of the

excitation numbers of the x- and y-directional motion, nx and ny.
Solution .

Since Ĥ = 1
2M (p̂2

x+ p̂2
y) = Ĥx+ Ĥy, where Ĥx = 1

2M p̂2
x and Ĥy = 1

2M p̂2
y, we have that

Enx,ny
= Enx

+Eny
, where the two summands are just the energies from HW#4.2. Thus:[=10pt]

Enx,ny
=
n2
xπ

2h̄2

2ML2
+
n2
yπ

2h̄2

2ML2
=

π2h̄2

2ML2

(
n2
x + n2

y) .
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c. Using separation of Cartesian coordinates, determine the Hilbert space of this 2-

dimensional system, i.e., list all the eigenstates of Ĥ, and state the orthonormality

and the completeness conditions.
Solution .

As standard in the separation of variables procedure, we have that ψnx,ny (x, y) =

ψnx
(x)ψny

(y) = 〈x|nx〉〈y|ny〉, and so also |nx, ny〉 = |nx〉⊗ |ny〉. Using the solutions from

HW#4.2 again, the eigenstates of Ĥ are:

ψnx,ny
(x, y) = 〈x, y|nx, ny〉 =

2

L
sin(nxπ

x

L
) sin(nyπ

y

L
) .

The orthogonality relation is

〈n′x, n′y|nx, ny〉 =
4

L2

∫ L

0

dx

∫ L

0

dy ψ∗n′
x,n

′
y
(x, y)ψnx,ny

(x, y) = δn′
x,nx

δn′
y,ny

, (o)

and the completeness relation is∑
nx,ny

|nx, ny〉 〈nx, ny| =
4

L2

∑
nx,ny

ψnx,ny (x, y)

∫ L

0

dx

∫ L

0

dy ψ∗nx,ny
(x, y)

(
· · ·
)

= 1l , (c)

where the ellipses in the parentheses indicate that the integral is to be appllied as an

integral transform on a function of x, y. Thus, the Hilbert space is: [=20pt]

H =
{
|nx, ny〉 : nx, ny = 1, 2, 3, . . . , Eq. (o), Eq. (c)

}
.

d. Tabulate (in 2D) the energies of states with 1 ≤ nx, ny ≤ 10, in units of h̄2π2

2ML2 and

determine their degeneracy (the number of states with that energy).
Solution .

Let’s begin with the table, as instructed:

ny\nx : 1 2 3 4 5 6 7 8 9 10

1 2 5 10 17 26 37 50 65 82 101

2 5 8 13 20 29 40 53 68 85 104

3 10 13 18 25 34 45 58 73 90 109

4 17 20 25 32 41 52 65 80 97 116

5 26 29 34 41 50 61 74 89 106 125

6 37 40 45 52 61 72 85 100 117 136

7 50 53 58 65 74 85 98 113 130 149

8 65 68 73 80 89 100 113 128 145 164

9 82 85 90 97 106 117 130 145 162 181

10 101 104 109 116 125 136 149 164 181 200

Table 1: The table of energy values, in units of π2h̄2

2ML2 .
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From the table it is clear that for every n′ 6=n, the states |n′, n〉 and |n, n′〉 have the

same energy, π2h̄2

2ML2 (n′2+n2). However, notice that there are additionally degenerate states,

which do not follow this pattern. For example, three different states, |1, 7〉, |7, 1〉 and |5, 5〉,

have the energy π2h̄2

2ML2 ·50, owing to the arithmetic accident 52 + 52 = 12 + 72. States on

the diagonal of the above table, |n, n〉, are non-degenerate unless they are, owing to an

arithmetic accident such as 52 + 52 = 12 + 72. Oh, by the way, if you got about half of the entries

above the diagonal (reflected below), you’d get full credit for this part. [=25pt]

e. Identify all the states that are degenerate owing to the x↔ y symmetry.

Solution .

These are indeed the |n′, n〉–|n, n′〉 pairs. This follows from observing that [=10pt]

P̂
x↔y

ψnx,ny
(x, y) = P̂

x↔y

2

L
sin(nxπ

x

L
) sin(nyπ

y

L
) =

2

L
sin(nxπ

y

L
) sin(nyπ

x

L
) ,

= ψny,nx
(x, y) = P̂

nx↔ny

ψnx,ny
(x, y) .

f. Does the x ↔ y symmetry cause all the degeneracy in this system or not? Justify

your answer, and give at least one example if your answer is “not.”

Solution .

As stated above, the x ↔ y symmetry does not account for all of the degeneracy.

The remaining degenerate states are degenerate owing to arithmetic accidents, such as

52 + 52 = 12 + 72, or 62 + 72 = 22 + 92, etc. [=10pt]

3. A Helium atom has its two electrons in a j1 = 3
2 and a j2 = 1

2 state, respectively.

a. Calculate all the possible values of the (composite) total angular momentum of the

2-electron system, j, its projection, m, and the degeneracy (multiplicity) of each.

Solution .

This pretty much follows the procedure done in class, so we list only the end result,

–4–
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in the familiar tabular form:

j1 = 3
2 j2 = 1

2 j = 2 j = 1

m1 m2 m m

+ 3
2 + 1

2 +2

+ 1
2 − 1

2 +1 +1

− 1
2 0 0

− 3
2 −1 −1

−2

Table 2: The addition of angular momenta table: the data in the top-left quad-

rant were given; those in the bottom-left quadrant are the possible projections

of the angular momenta in the column heading; those in the bottom-right quad-

rant are all the possible sums of projections, one from each of the columns in

the bottm-left quadrant; those in the top-right quadrant are deduced to be the

“magnitudes” of the angular momenta the projections of which appear in the

columns of the bottom-right quadrant.

So, the possible values of angular momenta are (j = 2, 1). Their projections (m) and

degeneracies (d) are: (m, d) = (±2, 1), (±1, 2), (0, 2). [=15pt]

b. Calculate the possible eigenvalues of the operator Ĵ1·Ĵ2. (A formula similar to (7.105)

may be derived and should simplify the task.)
Solution .

As directed:

〈Ĵ1·Ĵ2〉 = 1
2

[
〈Ĵ2〉 − 〈Ĵ2

1〉 − 〈Ĵ2
2〉
]
,

=

{
1
2

[
2(2+1)− 3

2 ( 3
2+1)− 1

2 ( 1
2+1)

]
= 3

4 , if j = 2;

1
2

[
1(1+1)− 3

2 ( 3
2+1)− 1

2 ( 1
2+1)

]
= − 5

4 , if j = 1.

[=10pt]

c. Is the complete total angular momentum of the Helium atom (including the nucleus)

integral of half-integral? Explain and justify.
Solution .

The atom of the standard isotope of Helium, 2
4He, has two electrons, two protons and

two neutrons. All of these have spin 1
2 h̄, and since there is an even number of them, their

composite spin must be integral. Orbital angular momenta are always integral, so the total,

composite, complete angular momentum of 2
4He-atom is integral. However, its adjacent

isotopes, 2
3He and 2

5He both have half-integral total angular momentum, on account of the

odd number (1 and 3, respectively) of spin- 1
2 neutrons. Finally, once ionized Helium atoms

have a single electron, so that the total angular momentum of 2
4He+, 2

3He+ and 2
5He+ is

half-integral, integral and integral, respectively. [=10pt]
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