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Don't Panic !Quantum Mechanics I 2nd Dec. ’02.
1st Midterm Exam Solutions T.Hübsch

DISCLAIMER: This solution set presents more detail than was required of the Student, and is
meant as an additional resource for learning. Please do study not just the solutions as presented,
but try also to understand the rationale behind the approach.

1. For a simple linear harmonic oscillator:

a. calculate 4P =

√

〈n|(P̂ − 〈n|P̂ |n〉)2|n〉, the indeterminacy of observing P̂ .
Sol’n:

As shown in class, the fastest way to calculate this is using the creation-annihilation
operator representation, with

P̂ = i

√

Mωh̄

2
(â† − â) ,

so it easily follows that

〈n|P̂ |n〉 = i

√

Mωh̄

2

(

〈n|â†|n〉 − 〈n|â|n〉
)

= i

√

Mωh̄

2

(√
n+1〈n|n+1〉 −

√
n〈n|n−1〉

)

≡ 0 .

Then (this is a simple linear harmonic oscillator, so ~P was na obvious typo):

4P =

√

〈n|P̂ 2|n〉 =

√

−Mωh̄

2
〈n|

(

â†2 − â†â− ââ† + â2
)

|n〉 .

Just as in the previous calculation, 〈n|â†2|n〉 = 0 = 〈n|â2|n〉, and we use
[

â, â†
]

= 1 so
ââ† = â†â + 1 and [=10pt]

4P =

√

Mωh̄

2
〈n|

(

2â†â + 1
)

|n〉 =
√

MEn , where En = h̄ω(n+ 1
2
) .

b. Calculate 4E , the indeterminacy of observing Ĥ. Compare with 4P and explain.
Sol’n:

Using the general definition and that Ĥ |n〉 = En |n〉, we have that

4E =

√

〈n|(Ĥ − 〈n|Ĥ|n〉)2|n〉 =

√

〈n|(Ĥ − En)2|n〉 =

√

〈n|(Ĥ2 − 2EnĤ +E2
n)|n〉

=
√

〈n|(E2
n − 2EnEn + E2

n)|n〉 ≡ 0 .

The indeterminacy being zero implies that En, the eigenvalue of Ĥ, may be measured
with infinite precision — which had to be true, since the |n〉 are the eigenstates of Ĥ; they
however are not eigenstates of P̂ , whence 4P 6= 0. [=10pt]

c. Calculate the matrix element 〈n′| 12 (Q̂P̂ + P̂ Q̂)|n〉 for all n′, n.
Sol’n:

First, translate this operator into the (â, â†) representation:

1
2(Q̂P̂ + P̂ Q̂) = 1

2

√

2h̄

Mω
i

√

Mωh̄

2

[

(â†+â)(â†−â) + (â†−â)(â†+â)
]

,

= h̄
2

[

(â†+â)(â†−â) + (â†−â)(â†+â)
]

= h̄
(

â†2 − â2
)

.



2nd Mid-Term Exam Instructor’s Solution

Now,
1
2
〈n′|(Q̂P̂ + P̂ Q̂)|n〉 = h̄

(

〈n′|â†2|n〉 − 〈n′|â2|n〉
)

,

= h̄
(
√

(n+1)(n+2)δn′,n+2 −
√

n(n−1)δn′,n−2

)

.

As usual: fill in the missing steps, please. [=15pt]

2. Consider a particle of mass M , moving in the potential W (x, y) = 1
2Mω2(x2+y2).

a. Sketch the potential, specify the boundary conditions on the wave-function (if any)
and state the nature (discrete/continuous) of the energy spectrum.

Sol’n:

W (x, y)

x

y

The boundary conditions stem from the fact that, for large enough values of x, y, V (x, y) >
E for any (constant) value of E. Thus, the wave-function (i.e., the probability density for

finding the particle) must vanish as r
def
=

√

x2+y2 → ∞. Therefore: limr→∞ ψ(x, y) =
0 is the required boundary condition. The wave-functions are thus localized, and the
corresponding states will have discrete energy levels for all E ≥ 0. E < 0 is not permitted,
as E < min

(

W (x, y)
)

yields unnormalizably divergent wave-functions. [=5pt]

b. Using separation of Cartesian coordinates, determine the energy levels in terms of the
excitation numbers of the x- and y-directional linear harmonic motion, nx and ny.

Sol’n:

Writing
Ĥ = Ĥx + Ĥy , where

Ĥx =
1

2M
P̂ 2

x + 1
2
Mω2x2 and Ĥy =

1

2M
P̂ 2

y + 1
2
Mω2y2 ,

we have that

Enx,ny
= Enx

+Eny
= h̄ω(nx + 1

2) + h̄ω(ny + 1
2 ) = h̄ω(nx + ny + 1) .

[=5pt]

c. Using separation of Cartesian coordinates, determine the Hilbert space of this 2-
dimensional oscillator, i.e., list all the eigenstates of Ĥ, and state the orthonormality
and the completeness conditions.

Sol’n:

Writing
|nx, ny〉 = |nx〉x |ny〉y , where

–2–
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|nx〉x =

(

â†x
)nx

nx!
|0〉x and |ny〉y =

(

â†y
)ny

ny!
|0〉y ,

we have that

|nx, ny〉 =

(

â†x
)nx

(

â†y
)ny

nx!ny!
|0, 0〉 .

[=15pt]

d. Determine the degeneracy of every energy level (# of states with that energy).
Sol’n:

Since Enx,ny
= h̄ω(nx+ny+1), the value of the energy depends only onN

def
= (nx+ny),

and not on ν
def
= (nx−ny). Now, from the first definition, we have that ny = N−nx,

so ν = 2nx−N , and it should be obvious that ν ∈ [−N,N ]: ν = N corresponds to
(nx, ny) = (N, 0) and ν = −N to (nx, ny) = (0, N).

What is less obvious, is that (for a fixed N) ν can change only in increments of 2: to
increase ν, we must increase nx; but then, to keep N fixed, we must also decrease ny by
the same amount, so (for a fixed N) 4ν = 24nx = −24ny.

Therefore, the number of values ν can take for a fixed value of N (and each defines
a degenerate wave-function) is N+1. That is, the energy level h̄ω(N+1) is N+1-fold
degenerate: |N, 0〉, |N−1, 1〉, · · · |0, N〉 all have the that same energy. [=5pt]

e. Writing ψ(r, φ) = e−
Mω
2h̄

r2

f(r) eimφ, determine the boundary conditions on f(r) and
eimφ, and so the type of values m can have. (The sign in the exponent was an obvious
typo; the Student is, however, graded on consistency and correctness of their work.)

Sol’n:

There are no real boundary conditions to be imposed on eimφ, since φ varies in a
circle, without a boundary. However, we do have to require ψ(r, φ) to be periodic, i.e.,
that ψ(r, φ+2π) ≡ ψ(r, φ). Thus eim(φ+2π) = eimφ implies that ei2mπ = 1, whence m ∈ ZZ,
i.e., m must be an integer.

Since W (r) > E when r → ∞ for any E, we know that all states are localized,
ψ(r, φ) → 0 as r → ∞, and the boundary condition for f(r) is that it may diverge, but

not too badly so that e−
α
2

r2

f(r) → 0 still holds. [=5pt]

f. Substituting this wave-function into the Schrödinger equation, determine and solve
the differential equation for f(r), subject to the boundary conditions. Show that this
solution precisely corresponds to the Cartesian one.

Sol’n:

In polar coordinates, the Schrödinger equation for our problem is

[1

r

∂

∂r
r
∂

∂r
+

1

r2
∂2

∂φ2
+ k2 − α2r2

]

ψ(r, φ) = 0 ,

where k2 = 2ME
h̄2 and α = Mω

h̄
. Since

∂2

∂φ2
ψ(r, φ) = −m2ψ(r, φ) = −m2e

α
2

r2

f(r) eimφ ,

upon substituting ψ(r, φ) = e−
Mω
2h̄

r2

f(r) eimφ, the Schrödinger equation becomes

[

f ′′ +
(1

r
− 2αr

)

f ′ +
(

k2 − 2α− m2

r2
)

f
]

e−
α
2

r2

= 0 .
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We seek solutions in the form f(r) =
∑∞

`=0 c`r
`+s, and obtain:

∞
∑

`=0

c`
[

(`+s)(`+s−1) + (`+s)−m2
]

r`+s−2 −
∞
∑

`=0

c`
[

2α(`+s) + 2α− k2
]

r`+s = 0 ,

i.e.,
∞
∑

`=0

c`
[

(`+s)2 −m2
]

r`+s−2 −
∞
∑

`=0

c`
[

2α(`+s+ 1)− k2
]

r`+s = 0 .

To add up the two sums, we shift the summation index in the first sum, ` → `+2, and
write the initial two terms separately:

c0[s
2−m2]rs−2+c1[(s+1)2−m2]rs−1+

∞
∑

`=0

{

c`+2

[

(`+s)2−m2
]

−c`
[

2α(`+s+1)−k2
]

}

r`+s = 0 .

Since different powers of any variable are linearly independent, the coefficient of each power
of r must vanish separately. Starting with the coefficient of rs−2, we conclude that s = ±m
since c0 6= 0 (the series must have an initial term). Then, the vanishing of the coefficient
of rs−1, c1[(s+1)2−m2] = c1(1± 2m), implies that c1 = 0 as (1± 2m) 6= 0 for integer m.
The vanishing of the remaining coefficients, enclosed in the curly braces, then implies that:

c`+2 = c`
2α(`+s+1)− k2

(`+s)2 −m2
= c`

2α(`±m+1)− k2

`(`±2m)
. (∗)

Note: c1 = 0 then implies that c` = 0 for all odd `; i.e., we must restrict to even `!

This defines f(r) =
∑∞

`=0 c`r
`+s, with the coefficients defined in Eq. (∗). We must

ensure, however, that this solution does not destroy the expected behavior, e−
α
2

r2

f(r) → 0.
To this end, we need to determine how fast does this series diverge for r → ∞. Since for
large r, larger powers of it have larger values, we consider

c`+2 = c`
2α(`±m+1)− k2

`(`±2m)

`→∞
−−→ 2α

`
c` ,

which is the recursion relation for the function F (r) = e+2αr2

. That is,

∞
∑

`=0

c`r
`+s ∼ e+2αr2

, for r →∞ ,

and this does not obey the stated boundary condition. The only solution is to choose
k2 = 2ME/h̄2 so that the recursion relation (∗) begins to produce zeroes after some `. To
that end, choose k2 = 2α(N+1), and find that cN∓m is the last non-zero coefficient. Then,
the solution becomes a polynomial of (`max±m)=Nth order, and the boundary condition
is obeyed. The relation k2 = 2α(N+1) then implies that

2MEN

h̄2 = 2
Mω

h̄
(N+1) , ⇒ EN = h̄ω(N + 1) . (�)

Since EN does not depend on m, the values of m (for a fixed N) count the degeneracy
of the energy level EN . Recalling that `max = N∓m ≥ 0, it follows that m ∈ [−N,+N ],
just like ν in the Cartesian solution above. Furthermore, remembering that c1 = 0 and the
recursion relation (∗) jointly imply that c` = 0 for all odd `, we require that `max = N∓m
is even, whereupon m can only change in even units—just like ν in the Cartesian solution.
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This almost proves the equivalence of the two solutions; what remains is to show
that the actual wave-functions agree: ψN,m(r, φ) = ψnx,ny

(x, y), with N = nx+ny and
m = nx−ny. We leave that to the diligent Student. [=20pt]

3. A Hydrogen atom has its electron in an “L orbital,” i.e., with ` = 1. The spin of the
electron is 1

2 , as is that of the proton (about which the electron orbits).

a. Calculate the possible values of the total angular momentum of the orbiting electron,
Ĵ = L̂ + Ŝe.

Sol’n:

Consider doing this first by using the triangle inequality:

1
2 = |`−se| ≤ j ≤ `+se = 3

2 , so j = 1
2 ,

3
2 .

[=10pt]

b. Calculate the possible values of the total angular momentum of the Hydrogen atom,
ĴH = L̂ + Ŝe + Ŝp.

Sol’n:

Consider doing this also first by using the triangle inequality:

0 = |`−se−sp| ≤ jH ≤ `+se+sp = 2 , so jH = 0, 1, 2 .

Now, the Student might complain: “Hold on, the four vector operators, ĴH , L̂, Ŝe, Ŝp

don’t form a triangle!” Indeed; they form a quadrangle. So the “triangle” rule needs to
be iterated. Since ĴH = Ĵ + Ŝp, we can write

min
(

|j−sp|
)

≤ jH ≤ max
(

j+sp

)

,

so as to obtain the correct [=10pt]

0 = min
(

| 1
2
− 1

2
|, | 3

2
− 1

2
|
)

≤ jH ≤ max
(

( 1
2
+ 1

2
), ( 3

2
+ 1

2
)
)

= 2 .

As far as obtaining the correct range, these relations suffice. However, they do not
specify the number of times a particular value can be obtained. To this end, we do have
to use the “table method” used in class; this is left for the diligent Student.

c. Calculate the possible eigenvalues of the operator L̂·Ŝe.
Sol’n:

As done in class, we square Ĵ = L̂ + Ŝe to obtain

Ĵ2 = L̂2 + Ŝ2
e + 2L̂·Ŝe ,

i.e.,

L̂·Ŝe = 1
2

[

L̂2 + Ŝ2
e − Ĵ2

]

,

so that

〈L̂·Ŝe〉 = 1
2

[

`(`+1) + se(se+1)− j(j+1)
]

= 1
2

[

2 + 3
4
−

{ 3/4

15/4

]

=
{ 1

−1/2
,

for the two possible values, j = 1
2 ,

3
2 . [=10pt]

d. Calculate the possible eigenvalues of the operator L̂·Ŝp.
Sol’n:

By the same token, we square K̂ = L̂ + Ŝp to obtain

L̂·Ŝp = 1
2

[

L̂2 + Ŝ2
p − K̂2

]

,

–5–
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so that

〈L̂·Ŝp〉 =
{ 1

−1/2
,

for the two possible values, 〈K̂2〉 = 3
4 ,

15
4 , since all the numerics are the same as in the

previous problem. [=10pt]

e. Calculate the possible eigenvalues of the operator Ŝp·Ŝe.
Sol’n:

By the same token, we square Ŝ = Ŝp + Ŝe to obtain

Ŝp·Ŝe = 1
2

[

Ŝ2
p + Ŝ2

e − Ŝ2
]

,

and note that 〈Ŝ2〉 = 0, 2, i.e., s = 0, 1 for this sum. Thus,

〈L̂·Ŝe〉 = 1
2

[

sp(sp+1) + se(se+1)− s(s+1)
]

=
{ 3/4

−1/4
,

for the two possible values, s = 0, 1. [=10pt]

f. Is the total angular momentum of the Hydrogen atom half-integral? Explain.
Sol’n:

First of all, (half-)integrality of an angular momentum (-like) operator Ĵ refers to the
(half-)integrality of the quantity j specifying the eigenvalues ofˆ2 as j(j+1).

So, no, the total angular momentum of a Hydrogen atom is not half-integral; it’s
integral. The reason is that the Hydrogen atom system includes both one electron and one
proton, and the total angular momentum of the whole Hydrogen atom system is then ĴH ,
as defined above to include the (half-integral) spins of each of the proton and the electron,
and the (integral) orbital angular momentum of the electron-proton system. For this jH
we have found integer eigenvalues, jH = 0, 1, 2.

In general, a composite system consisting of an even number of separate subsystems
(fermions) with half-integral spins and any number of separate subsystems (bosons) with
integral spins will have an integral total angular momentum. Conversely, a composite
system consisting of an odd number of separate subsystems (fermions) with half-integral
spins and any number of separate subsystems (bosons) with integral spins will have a half-
integral total angular momentum. Thus, the Hydrogen atom is bosonic, but the Deuterium
atom is fermionic (it has an extra neutron, with spin 1

2 , in the nucleus), while the Tritium
atom is again bosonic (it has two extra neutrons in the nucleus), etc. [=5pt]
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