HOWARD UNIVERSITY

WASHINGTON, DC 20059

DEPARTMENT OF PHYSICS AND ASTRONOMY (202)-806-6245 (MAIN OFFICE) (202)-806-5830 (FAX)

Quantum Mechanics I

1st Midterm Exam Solutions

Don't Panic !

2355 SIXTH ST., NW, TKH RM.215 thubsch@howard.edu (202)-806-6257

> 2nd Dec. '02. T. Hübsch

DISCLAIMER: This solution set presents more detail than was required of the Student, and is meant as an additional resource for learning. Please *do* study not just the solutions as presented, but try also to understand the rationale behind the approach.

1. For a simple linear harmonic oscillator:

a. calculate
$$\Delta_P = \sqrt{\langle n | (\hat{P} - \langle n | \hat{P} | n \rangle)^2 | n \rangle}$$
, the indeterminacy of observing \hat{P}

As shown in class, the fastest way to calculate this is using the creation-annihilation operator representation, with

$$\hat{P} = i\sqrt{\frac{M\omega\hbar}{2}}(\hat{a}^{\dagger} - \hat{a})$$

so it easily follows that

$$\langle n|\hat{P}|n\rangle = i\sqrt{\frac{M\omega\hbar}{2}} \left(\langle n|\hat{a}^{\dagger}|n\rangle - \langle n|\hat{a}|n\rangle \right) = i\sqrt{\frac{M\omega\hbar}{2}} \left(\sqrt{n+1} \langle n|n+1\rangle - \sqrt{n} \langle n|n-1\rangle \right) \equiv 0 .$$

Then (this is a *simple linear* harmonic oscillator, so \vec{P} was no obvious typo):

$$\Delta_P = \sqrt{\langle n | \hat{P}^2 | n \rangle} = \sqrt{-\frac{M\omega\hbar}{2} \langle n | (\hat{a}^{\dagger 2} - \hat{a}^{\dagger} \hat{a} - \hat{a} \hat{a}^{\dagger} + \hat{a}^2) | n \rangle}$$

Just as in the previous calculation, $\langle n|\hat{a}^{\dagger 2}|n\rangle = 0 = \langle n|\hat{a}^{2}|n\rangle$, and we use $[\hat{a}, \hat{a}^{\dagger}] = 1$ so $\hat{a}\hat{a}^{\dagger} = \hat{a}^{\dagger}\hat{a} + 1$ and [=10pt]

$$\Delta_P = \sqrt{\frac{M\omega\hbar}{2}} \langle n | (2\hat{a}^{\dagger}\hat{a} + 1) | n \rangle = \sqrt{ME_n} , \quad \text{where} \quad E_n = \hbar\omega(n + \frac{1}{2}) .$$

b. Calculate \triangle_E , the indeterminacy of observing \hat{H} . Compare with \triangle_P and explain.

Using the general definition and that $\hat{H} |n\rangle = E_n |n\rangle$, we have that

$$\Delta_E = \sqrt{\langle n | (\hat{H} - \langle n | \hat{H} | n \rangle)^2 | n \rangle} = \sqrt{\langle n | (\hat{H} - E_n)^2 | n \rangle} = \sqrt{\langle n | (\hat{H}^2 - 2E_n \hat{H} + E_n^2) | n \rangle}$$
$$= \sqrt{\langle n | (E_n^2 - 2E_n E_n + E_n^2) | n \rangle} \equiv 0 .$$

The indeterminacy being zero implies that E_n , the eigenvalue of \hat{H} , may be measured with infinite precision — which had to be true, since the $|n\rangle$ are the eigenstates of \hat{H} ; they however are not eigenstates of \hat{P} , whence $\Delta_P \neq 0$. [=10pt]

c. Calculate the matrix element $\langle n'|\frac{1}{2}(\hat{Q}\hat{P}+\hat{P}\hat{Q})|n\rangle$ for all n', n.

^{*i*} First, translate this operator into the $(\hat{a}, \hat{a}^{\dagger})$ representation:

$$\frac{1}{2}(\hat{Q}\hat{P} + \hat{P}\hat{Q}) = \frac{1}{2}\sqrt{\frac{2\hbar}{M\omega}}i\sqrt{\frac{M\omega\hbar}{2}}\left[(\hat{a}^{\dagger} + \hat{a})(\hat{a}^{\dagger} - \hat{a}) + (\hat{a}^{\dagger} - \hat{a})(\hat{a}^{\dagger} + \hat{a})\right] \\ = \frac{\hbar}{2}\left[(\hat{a}^{\dagger} + \hat{a})(\hat{a}^{\dagger} - \hat{a}) + (\hat{a}^{\dagger} - \hat{a})(\hat{a}^{\dagger} + \hat{a})\right] = \hbar\left(\hat{a}^{\dagger 2} - \hat{a}^{2}\right).$$

2nd Mid-Term Exam

Now,

Sol'n:

$$\frac{1}{2}\langle n'|(\hat{Q}\hat{P}+\hat{P}\hat{Q})|n\rangle = \hbar\left(\langle n'|\hat{a}^{\dagger 2}|n\rangle - \langle n'|\hat{a}^{2}|n\rangle\right),$$
$$= \hbar\left(\sqrt{(n+1)(n+2)}\delta_{n',n+2} - \sqrt{n(n-1)}\delta_{n',n-2}\right).$$

As usual: fill in the missing steps, please.

2. Consider a particle of mass M, moving in the potential $W(x,y) = \frac{1}{2}M\omega^2(x^2+y^2)$.

a. Sketch the potential, specify the boundary conditions on the wave-function (if any) and state the nature (discrete/continuous) of the energy spectrum.

The boundary conditions stem from the fact that, for large enough values of x, y, V(x, y) > E for any (constant) value of E. Thus, the wave-function (*i.e.*, the probability density for finding the particle) must vanish as $r \stackrel{\text{def}}{=} \sqrt{x^2 + y^2} \to \infty$. Therefore: $\lim_{r \to \infty} \psi(x, y) = 0$ is the required boundary condition. The wave-functions are thus localized, and the corresponding states will have discrete energy levels for all $E \ge 0$. E < 0 is not permitted, as $E < \min(W(x, y))$ yields unnormalizably divergent wave-functions. [=5pt]

b. Using separation of Cartesian coordinates, determine the energy levels in terms of the excitation numbers of the x- and y-directional linear harmonic motion, n_x and n_y .

$$\hat{H} = \hat{H}_x + \hat{H}_y$$
, where
 $\hat{H}_x = \frac{1}{2M}\hat{P}_x^2 + \frac{1}{2}M\omega^2 x^2$ and $\hat{H}_y = \frac{1}{2M}\hat{P}_y^2 + \frac{1}{2}M\omega^2 y^2$,

we have that

$$E_{n_x,n_y} = E_{n_x} + E_{n_y} = \hbar\omega(n_x + \frac{1}{2}) + \hbar\omega(n_y + \frac{1}{2}) = \hbar\omega(n_x + n_y + 1) .$$
[=5pt]

- c. Using separation of Cartesian coordinates, determine the Hilbert space of this 2dimensional oscillator, *i.e.*, list all the eigenstates of \hat{H} , and state the orthonormality and the completeness conditions.
- Sol'n: Writing

$$|n_x, n_y\rangle = |n_x\rangle_x |n_y\rangle_y$$
, where

[=15pt]

2nd Mid-Term Exam

Instructor's Solution

$$\left|n_{x}\right\rangle_{x}=\frac{\left(\left\|^{\dagger}_{x}\right)^{n_{x}}}{n_{x}!}\left|0\right\rangle_{x} \quad \text{and} \quad \left|n_{y}\right\rangle_{y}=\frac{\left(\left\|^{\dagger}_{y}\right)^{n_{y}}}{n_{y}!}\left|0\right\rangle_{y} \ ,$$

we have that

$$|n_x, n_y\rangle = \frac{\left(\hat{\mathbf{a}}^{\dagger}_x\right)^{n_x} \left(\hat{\mathbf{a}}^{\dagger}_y\right)^{n_y}}{n_x! n_y!} |0, 0\rangle \ .$$

[=15pt]

d. Determine the degeneracy of *every* energy level (# of states with that energy).

Solution: Since $E_{n_x,n_y} = \hbar \omega (n_x + n_y + 1)$, the value of the energy depends only on $N \stackrel{\text{def}}{=} (n_x + n_y)$, and not on $\nu \stackrel{\text{def}}{=} (n_x - n_y)$. Now, from the first definition, we have that $n_y = N - n_x$, so $\nu = 2n_x - N$, and it should be obvious that $\nu \in [-N, N]$: $\nu = N$ corresponds to $(n_x, n_y) = (N, 0)$ and $\nu = -N$ to $(n_x, n_y) = (0, N)$.

What is less obvious, is that (for a fixed N) ν can change only in increments of 2: to increase ν , we must increase n_x ; but then, to keep N fixed, we must also decrease n_y by the same amount, so (for a fixed N) $\Delta \nu = 2\Delta n_x = -2\Delta n_y$.

Therefore, the number of values ν can take for a fixed value of N (and each defines a degenerate wave-function) is N+1. That is, the energy level $\hbar\omega(N+1)$ is N+1-fold degenerate: $|N,0\rangle$, $|N-1,1\rangle$, \cdots $|0,N\rangle$ all have the that same energy. [=5pt]

e. Writing $\psi(r, \phi) = e^{-\frac{M\omega}{2\hbar}r^2} f(r) e^{im\phi}$, determine the boundary conditions on f(r) and $e^{im\phi}$, and so the type of values m can have. (The sign in the exponent was an obvious type; the Student is, however, graded on consistency and correctness of their work.)

^{Solfn:} There are no real boundary conditions to be imposed on $e^{im\phi}$, since ϕ varies in a circle, without a boundary. However, we do have to require $\psi(r, \phi)$ to be periodic, *i.e.*, that $\psi(r, \phi+2\pi) \equiv \psi(r, \phi)$. Thus $e^{im(\phi+2\pi)} = e^{im\phi}$ implies that $e^{i2m\pi} = 1$, whence $m \in \mathbb{Z}$, *i.e.*, m must be an integer.

Since W(r) > E when $r \to \infty$ for any E, we know that all states are localized, $\psi(r, \phi) \to 0$ as $r \to \infty$, and the boundary condition for f(r) is that it may diverge, but not too badly so that $e^{-\frac{\alpha}{2}r^2}f(r) \to 0$ still holds. [=5pt]

f. Substituting this wave-function into the Schrödinger equation, determine and solve the differential equation for f(r), subject to the boundary conditions. Show that this solution precisely corresponds to the Cartesian one.

Sol'n: In polar coordinates, the Schrödinger equation for our problem is

$$\Big[\frac{1}{r}\frac{\partial}{\partial r}r\frac{\partial}{\partial r} + \frac{1}{r^2}\frac{\partial^2}{\partial \phi^2} + k^2 - \alpha^2 r^2\Big]\psi(r,\phi) = 0 ,$$

where $k^2 = \frac{2ME}{\hbar^2}$ and $\alpha = \frac{M\omega}{\hbar}$. Since

$$\frac{\partial^2}{\partial \phi^2} \psi(r,\phi) = -m^2 \psi(r,\phi) = -m^2 e^{\frac{\alpha}{2}r^2} f(r) e^{im\phi} ,$$

upon substituting $\psi(r,\phi) = e^{-\frac{M\omega}{2\hbar}r^2} f(r) e^{im\phi}$, the Schrödinger equation becomes

$$\left[f'' + \left(\frac{1}{r} - 2\alpha r\right)f' + \left(k^2 - 2\alpha - \frac{m^2}{r^2}\right)f\right]e^{-\frac{\alpha}{2}r^2} = 0.$$

We seek solutions in the form $f(r) = \sum_{\ell=0}^{\infty} c_{\ell} r^{\ell+s}$, and obtain:

$$\sum_{\ell=0}^{\infty} c_{\ell} \big[(\ell+s)(\ell+s-1) + (\ell+s) - m^2 \big] r^{\ell+s-2} - \sum_{\ell=0}^{\infty} c_{\ell} \big[2\alpha(\ell+s) + 2\alpha - k^2 \big] r^{\ell+s} = 0 ,$$

i.e.,

$$\sum_{\ell=0}^{\infty} c_{\ell} \big[(\ell+s)^2 - m^2 \big] r^{\ell+s-2} - \sum_{\ell=0}^{\infty} c_{\ell} \big[2\alpha(\ell+s+1) - k^2 \big] r^{\ell+s} = 0 .$$

To add up the two sums, we shift the summation index in the first sum, $\ell \to \ell+2$, and write the initial two terms separately:

$$c_0[s^2 - m^2]r^{s-2} + c_1[(s+1)^2 - m^2]r^{s-1} + \sum_{\ell=0}^{\infty} \left\{ c_{\ell+2} \left[(\ell+s)^2 - m^2 \right] - c_\ell \left[2\alpha(\ell+s+1) - k^2 \right] \right\} r^{\ell+s} = 0$$

Since different powers of any variable are linearly independent, the coefficient of each power of r must vanish separately. Starting with the coefficient of r^{s-2} , we conclude that $s = \pm m$ since $c_0 \neq 0$ (the series must have an initial term). Then, the vanishing of the coefficient of r^{s-1} , $c_1[(s+1)^2 - m^2] = c_1(1 \pm 2m)$, implies that $c_1 = 0$ as $(1 \pm 2m) \neq 0$ for integer m. The vanishing of the remaining coefficients, enclosed in the curly braces, then implies that:

$$c_{\ell+2} = c_{\ell} \frac{2\alpha(\ell+s+1) - k^2}{(\ell+s)^2 - m^2} = c_{\ell} \frac{2\alpha(\ell\pm m+1) - k^2}{\ell(\ell\pm 2m)} . \tag{*}$$

Note: $c_1 = 0$ then implies that $c_{\ell} = 0$ for all odd ℓ ; *i.e.*, we must restrict to even ℓ !

This defines $f(r) = \sum_{\ell=0}^{\infty} c_{\ell} r^{\ell+s}$, with the coefficients defined in Eq. (*). We must ensure, however, that this solution does not destroy the expected behavior, $e^{-\frac{\alpha}{2}r^2}f(r) \to 0$. To this end, we need to determine how fast does this series diverge for $r \to \infty$. Since for large r, larger powers of it have larger values, we consider

$$c_{\ell+2} = c_{\ell} \frac{2\alpha(\ell \pm m + 1) - k^2}{\ell(\ell \pm 2m)} \xrightarrow{\ell \to \infty} \frac{2\alpha}{\ell} c_{\ell} ,$$

which is the recursion relation for the function $F(r) = e^{+2\alpha r^2}$. That is,

$$\sum_{\ell=0}^{\infty} c_{\ell} r^{\ell+s} \sim e^{+2\alpha r^2} , \quad \text{for} \quad r \to \infty ,$$

and this does not obey the stated boundary condition. The only solution is to choose $k^2 = 2ME/\hbar^2$ so that the recursion relation (*) begins to produce zeroes after some ℓ . To that end, choose $k^2 = 2\alpha(N+1)$, and find that $c_{N\mp m}$ is the last non-zero coefficient. Then, the solution becomes a polynomial of $(\ell_{\max}\pm m)=N$ th order, and the boundary condition is obeyed. The relation $k^2 = 2\alpha(N+1)$ then implies that

$$\frac{2ME_N}{\hbar^2} = 2\frac{M\omega}{\hbar}(N+1) , \quad \Rightarrow \quad E_N = \hbar\omega(N+1) . \tag{(\diamond)}$$

Since E_N does not depend on m, the values of m (for a fixed N) count the degeneracy of the energy level E_N . Recalling that $\ell_{\max} = N \mp m \ge 0$, it follows that $m \in [-N, +N]$, just like ν in the Cartesian solution above. Furthermore, remembering that $c_1 = 0$ and the recursion relation (*) jointly imply that $c_\ell = 0$ for all odd ℓ , we require that $\ell_{\max} = N \mp m$ is even, whereupon m can only change in even units—just like ν in the Cartesian solution.

Instructor's Solution

This almost proves the equivalence of the two solutions; what remains is to show that the actual wave-functions agree: $\psi_{N,m}(r,\phi) = \psi_{n_x,n_y}(x,y)$, with $N = n_x + n_y$ and $m = n_x - n_y$. We leave that to the diligent Student. [=20pt]

3. A Hydrogen atom has its electron in an "*L* orbital," *i.e.*, with $\ell = 1$. The spin of the electron is $\frac{1}{2}$, as is that of the proton (about which the electron orbits).

a. Calculate the possible values of the total angular momentum of the orbiting electron, $\hat{\mathbf{J}} = \hat{\mathbf{L}} + \hat{\mathbf{S}}_e$.

^{'n:} Consider doing this first by using the triangle inequality:

$$\frac{1}{2} = |\ell - s_e| \le j \le \ell + s_e = \frac{3}{2}$$
, so $j = \frac{1}{2}, \frac{3}{2}$.

b. Calculate the possible values of the total angular momentum of the Hydrogen atom, $\hat{\mathbf{J}}_{H} = \hat{\mathbf{L}} + \hat{\mathbf{S}}_{e} + \hat{\mathbf{S}}_{p}.$

^{bol'n:} Consider doing this also first by using the triangle inequality:

$$0 = |\ell - s_e - s_p| \le j_H \le \ell + s_e + s_p = 2$$
, so $j_H = 0, 1, 2$.

Now, the Student might complain: "Hold on, the *four* vector operators, $\hat{\mathbf{J}}_H$, $\hat{\mathbf{L}}$, $\hat{\mathbf{S}}_e$, $\hat{\mathbf{S}}_p$ don't form a triangle!" Indeed; they form a quadrangle. So the "triangle" rule needs to be iterated. Since $\hat{\mathbf{J}}_H = \hat{\mathbf{J}} + \hat{\mathbf{S}}_p$, we can write

$$\min\left(|j-s_p|\right) \le j_H \le \max\left(j+s_p\right) \,,$$

so as to obtain the correct

$$0 = \min\left(\left|\frac{1}{2} - \frac{1}{2}\right|, \left|\frac{3}{2} - \frac{1}{2}\right|\right) \le j_H \le \max\left(\left(\frac{1}{2} + \frac{1}{2}\right), \left(\frac{3}{2} + \frac{1}{2}\right)\right) = 2.$$

As far as obtaining the correct range, these relations suffice. However, they do not specify the number of times a particular value can be obtained. To this end, we do have to use the "table method" used in class; this is left for the diligent Student.

c. Calculate the possible eigenvalues of the operator $\hat{\mathbf{L}} \cdot \hat{\mathbf{S}}_e$.

^{Sol'n:} As done in class, we square $\hat{\mathbf{J}} = \hat{\mathbf{L}} + \hat{\mathbf{S}}_e$ to obtain $\hat{\mathbf{J}}^2 = \hat{\mathbf{L}}^2 + \hat{\mathbf{S}}_e^2 + 2\hat{\mathbf{L}}\cdot\hat{\mathbf{S}}_e$,

i.e.,

$$\hat{\mathbf{L}} \cdot \hat{\mathbf{S}}_e = \frac{1}{2} \left[\hat{\mathbf{L}}^2 + \hat{\mathbf{S}}_e^2 - \hat{\mathbf{J}}^2 \right] \,,$$

so that

$$\langle \hat{\mathbf{L}} \cdot \hat{\mathbf{S}}_e \rangle = \frac{1}{2} \Big[\ell(\ell+1) + s_e(s_e+1) - j(j+1) \Big] = \frac{1}{2} \Big[2 + \frac{3}{4} - \left\{ \frac{3/4}{15/4} \right] = \left\{ \frac{1}{-1/2} \right\},$$

for the two possible values, $j = \frac{1}{2}, \frac{3}{2}$.

d. Calculate the possible eigenvalues of the operator $\hat{\mathbf{L}} \cdot \hat{\mathbf{S}}_p$.

^{ol'n:} By the same token, we square $\hat{\mathbf{K}} = \hat{\mathbf{L}} + \hat{\mathbf{S}}_p$ to obtain

$$\hat{\mathbf{L}} \cdot \hat{\mathbf{S}}_p = \frac{1}{2} \left[\hat{\mathbf{L}}^2 + \hat{\mathbf{S}}_p^2 - \hat{\mathbf{K}}^2 \right] \,,$$

[=10pt]

[=10pt]

[=10pt]

2nd Mid-Term Exam

so that

$$\langle \hat{\mathbf{L}} \cdot \hat{\mathbf{S}}_p \rangle = \begin{cases} 1 \\ -1/2 \end{cases}$$

for the two possible values, $\langle \hat{\mathbf{K}}^2 \rangle = \frac{3}{4}, \frac{15}{4}$, since all the numerics are the same as in the previous problem. [=10pt]

e. Calculate the possible eigenvalues of the operator $\hat{\mathbf{S}}_{p} \cdot \hat{\mathbf{S}}_{e}$.

Sol^{n:} By the same token, we square $\hat{\mathbf{S}} = \hat{\mathbf{S}}_p + \hat{\mathbf{S}}_e$ to obtain

$$\hat{\mathbf{S}}_p \cdot \hat{\mathbf{S}}_e = rac{1}{2} \left[\hat{\mathbf{S}}_p^2 + \hat{\mathbf{S}}_e^2 - \hat{\mathbf{S}}^2
ight] \, ,$$

and note that $\langle \hat{\mathbf{S}}^2 \rangle = 0, 2, i.e., s = 0, 1$ for this sum. Thus,

$$\langle \hat{\mathbf{L}} \cdot \hat{\mathbf{S}}_e \rangle = \frac{1}{2} \left[s_p(s_p+1) + s_e(s_e+1) - s(s+1) \right] = \begin{cases} 3/4 \\ -1/4 \end{cases}$$

for the two possible values, s = 0, 1.

f. Is the total angular momentum of the Hydrogen atom half-integral? Explain.

^{Sol'n:} First of all, (half-)integrality of an angular momentum (-like) operator $\hat{\mathbf{J}}$ refers to the (half-)integrality of the quantity j specifying the eigenvalues of 2 as j(j+1).

So, no, the total angular momentum of a Hydrogen atom is not half-integral; it's integral. The reason is that the Hydrogen atom system includes both one electron and one proton, and the total angular momentum of the whole Hydrogen atom system is then $\hat{\mathbf{J}}_H$, as defined above to include the (half-integral) spins of each of the proton and the electron, and the (integral) orbital angular momentum of the electron-proton system. For this j_H we have found integer eigenvalues, $j_H = 0, 1, 2$.

In general, a composite system consisting of an *even* number of separate subsystems (fermions) with half-integral spins and any number of separate subsystems (bosons) with integral spins will have an integral total angular momentum. Conversely, a composite system consisting of an *odd* number of separate subsystems (fermions) with half-integral spins and any number of separate subsystems (bosons) with integral spins will have a half-integral total angular momentum. Thus, the Hydrogen atom is bosonic, but the Deuterium atom is fermionic (it has an extra neutron, with spin $\frac{1}{2}$, in the nucleus), while the Tritium atom is again bosonic (it has two extra neutrons in the nucleus), *etc.* [=5pt]

[=10pt]