Howard University

Washington, DC 20059

Department of Physics and Astronomy (202)-806-6245 (Main OfFice)
(202)-806-5830 (fax)

Quantum Mechanics I

1st Midterm Exam Solutions

Don't Panic !

2355 Sixth St., NW, TKH Rm. 215

DISCLAIMER: This solution set presents more detail than was required of the Student, and is meant as an additional resource for learning. Please do study not just the solutions as presented, but try also to understand the rationale behind the approach.

1. For a simple linear harmonic oscillator:
a. calculate $\triangle_{P}=\sqrt{\langle n|(\hat{P}-\langle n| \hat{P}|n\rangle)^{2}|n\rangle}$, the indeterminacy of observing \hat{P}.

As shown in class, the fastest way to calculate this is using the creation-annihilation operator representation, with

$$
\hat{P}=i \sqrt{\frac{M \omega \hbar}{2}}\left(\hat{a}^{\dagger}-\hat{\mathrm{a}}\right),
$$

so it easily follows that

$$
\langle n| \hat{P}|n\rangle=i \sqrt{\frac{M \omega \hbar}{2}}\left(\langle n| \hat{\mathrm{a}}^{\dagger}|n\rangle-\langle n| \hat{\mathrm{a}}|n\rangle\right)=i \sqrt{\frac{M \omega \hbar}{2}}(\sqrt{n+1}\langle n \mid n+1\rangle-\sqrt{n}\langle n \mid n-1\rangle) \equiv 0 .
$$

Then (this is a simple linear harmonic oscillator, so \vec{P} was na obvious typo):

$$
\triangle_{P}=\sqrt{\langle n| \hat{P}^{2}|n\rangle}=\sqrt{-\frac{M \omega \hbar}{2}\langle n|\left(\hat{\mathrm{a}}^{\dagger 2}-\hat{\mathrm{a}}^{\dagger} \dagger \hat{\mathrm{a}}-\hat{\mathrm{a}}^{\dagger} \hat{\mathrm{a}}^{\dagger}+\hat{\mathrm{a}}^{2}\right)|n\rangle} .
$$

Just as in the previous calculation, $\langle n| \hat{\mathrm{a}}^{\dagger 2}|n\rangle=0=\langle n| \hat{\mathrm{a}}^{2}|n\rangle$, and we use $\left[\hat{\mathrm{a}}, \hat{\mathrm{a}}^{\dagger}\right]=1$ so $\hat{a} \hat{a}^{\dagger}=\hat{a}^{\dagger} \hat{a}+1$ and

$$
[=10 \mathrm{pt}]
$$

$$
\triangle_{P}=\sqrt{\frac{M \omega \hbar}{2}\langle n|\left(2 \hat{a}^{\dagger} \hat{\mathrm{a}}+1\right)|n\rangle}=\sqrt{M E_{n}}, \quad \text { where } \quad E_{n}=\hbar \omega\left(n+\frac{1}{2}\right)
$$

b. Calculate \triangle_{E}, the indeterminacy of observing \hat{H}. Compare with \triangle_{P} and explain.

Sorn: Using the general definition and that $\hat{H}|n\rangle=E_{n}|n\rangle$, we have that

$$
\begin{aligned}
\triangle_{E} & =\sqrt{\langle n|(\hat{H}-\langle n| \hat{H}|n\rangle)^{2}|n\rangle}=\sqrt{\langle n|\left(\hat{H}-E_{n}\right)^{2}|n\rangle}=\sqrt{\langle n|\left(\hat{H}^{2}-2 E_{n} \hat{H}+E_{n}^{2}\right)|n\rangle} \\
& =\sqrt{\langle n|\left(E_{n}^{2}-2 E_{n} E_{n}+E_{n}^{2}\right)|n\rangle} \equiv 0 .
\end{aligned}
$$

The indeterminacy being zero implies that E_{n}, the eigenvalue of \hat{H}, may be measured with infinite precision - which had to be true, since the $|n\rangle$ are the eigenstates of \hat{H}; they however are not eigenstates of \hat{P}, whence $\triangle_{P} \neq 0$.
c. Calculate the matrix element $\left\langle n^{\prime}\right| \frac{1}{2}(\hat{Q} \hat{P}+\hat{P} \hat{Q})|n\rangle$ for all n^{\prime}, n.

First, translate this operator into the ($\hat{\mathrm{a}}, \hat{a}^{\dagger}$) representation:

$$
\begin{aligned}
\frac{1}{2}(\hat{Q} \hat{P}+\hat{P} \hat{Q}) & =\frac{1}{2} \sqrt{\frac{2 \hbar}{M \omega}} i \sqrt{\frac{M \omega \hbar}{2}}\left[\left(\hat{a}^{\dagger}+\hat{a}\right)\left(\hat{a}^{\dagger}-\hat{a}\right)+\left(\hat{a}^{\dagger}-\hat{\mathrm{a}}\right)\left(\hat{a}^{\dagger}+\hat{\mathrm{a}}\right)\right] \\
& =\frac{\hbar}{2}\left[\left(\hat{a}^{\dagger}+\hat{\mathrm{a}}\right)\left(\hat{\mathrm{a}}^{\dagger}-\hat{\mathrm{a}}\right)+\left(\hat{\mathrm{a}}^{\dagger}-\hat{\mathrm{a}}\right)\left(\hat{\mathrm{a}}^{\dagger}+\hat{\mathrm{a}}\right)\right]=\hbar\left(\hat{\mathrm{a}}^{\dagger 2}-\hat{\mathrm{a}}^{2}\right)
\end{aligned}
$$

Now,

$$
\begin{aligned}
\frac{1}{2}\left\langle n^{\prime}\right|(\hat{Q} \hat{P}+\hat{P} \hat{Q})|n\rangle & =\hbar\left(\left\langle n^{\prime}\right| \hat{\mathrm{a}}^{\dagger 2}|n\rangle-\left\langle n^{\prime}\right| \hat{\mathrm{a}}^{2}|n\rangle\right) \\
& =\hbar\left(\sqrt{(n+1)(n+2)} \delta_{n^{\prime}, n+2}-\sqrt{n(n-1)} \delta_{n^{\prime}, n-2}\right)
\end{aligned}
$$

As usual: fill in the missing steps, please.
2. Consider a particle of mass M, moving in the potential $W(x, y)=\frac{1}{2} M \omega^{2}\left(x^{2}+y^{2}\right)$.
a. Sketch the potential, specify the boundary conditions on the wave-function (if any) and state the nature (discrete/continuous) of the energy spectrum.

The boundary conditions stem from the fact that, for large enough values of $x, y, V(x, y)>$ E for any (constant) value of E. Thus, the wave-function (i.e., the probability density for finding the particle) must vanish as $r \stackrel{\text { def }}{=} \sqrt{x^{2}+y^{2}} \rightarrow \infty$. Therefore: $\lim _{r \rightarrow \infty} \psi(x, y)=$ 0 is the required boundary condition. The wave-functions are thus localized, and the corresponding states will have discrete energy levels for all $E \geq 0 . E<0$ is not permitted, as $E<\min (W(x, y))$ yields unnormalizably divergent wave-functions.
b. Using separation of Cartesian coordinates, determine the energy levels in terms of the excitation numbers of the x - and y-directional linear harmonic motion, n_{x} and n_{y}.
Solin: Writing

$$
\begin{gathered}
\hat{H}=\hat{H}_{x}+\hat{H}_{y}, \quad \text { where } \\
\hat{H}_{x}=\frac{1}{2 M} \hat{P}_{x}^{2}+\frac{1}{2} M \omega^{2} x^{2} \quad \text { and } \quad \hat{H}_{y}=\frac{1}{2 M} \hat{P}_{y}^{2}+\frac{1}{2} M \omega^{2} y^{2}
\end{gathered}
$$

we have that

$$
\begin{equation*}
E_{n_{x}, n_{y}}=E_{n_{x}}+E_{n_{y}}=\hbar \omega\left(n_{x}+\frac{1}{2}\right)+\hbar \omega\left(n_{y}+\frac{1}{2}\right)=\hbar \omega\left(n_{x}+n_{y}+1\right) . \tag{=5pt}
\end{equation*}
$$

c. Using separation of Cartesian coordinates, determine the Hilbert space of this 2dimensional oscillator, i.e., list all the eigenstates of \hat{H}, and state the orthonormality and the completeness conditions.

[^0]$$
\left|n_{x}\right\rangle_{x}=\frac{\left(\hat{\mathrm{a}}^{\dagger} x\right)^{n_{x}}}{n_{x}!}|0\rangle_{x} \quad \text { and } \quad\left|n_{y}\right\rangle_{y}=\frac{\left(\hat{\mathrm{a}}_{y}^{\dagger}\right)^{n_{y}}}{n_{y}!}|0\rangle_{y}
$$
we have that
\[

$$
\begin{equation*}
\left|n_{x}, n_{y}\right\rangle=\frac{\left(\hat{\mathrm{a}}^{\dagger} x\right)^{n_{x}}\left(\hat{\mathrm{a}}^{\dagger} y\right)^{n_{y}}}{n_{x}!n_{y}!}|0,0\rangle . \tag{=15pt}
\end{equation*}
$$

\]

d. Determine the degeneracy of every energy level (\# of states with that energy).

Soln: Since $E_{n_{x}, n_{y}}=\hbar \omega\left(n_{x}+n_{y}+1\right)$, the value of the energy depends only on $N \stackrel{\text { def }}{=}\left(n_{x}+n_{y}\right)$, and not on $\nu \stackrel{\text { def }}{=}\left(n_{x}-n_{y}\right)$. Now, from the first definition, we have that $n_{y}=N-n_{x}$, so $\nu=2 n_{x}-N$, and it should be obvious that $\nu \in[-N, N]: \nu=N$ corresponds to $\left(n_{x}, n_{y}\right)=(N, 0)$ and $\nu=-N$ to $\left(n_{x}, n_{y}\right)=(0, N)$.

What is less obvious, is that (for a fixed N) ν can change only in increments of 2 : to increase ν, we must increase n_{x}; but then, to keep N fixed, we must also decrease n_{y} by the same amount, so (for a fixed N) $\triangle \nu=2 \triangle n_{x}=-2 \triangle n_{y}$.

Therefore, the number of values ν can take for a fixed value of N (and each defines a degenerate wave-function) is $N+1$. That is, the energy level $\hbar \omega(N+1)$ is $N+1$-fold degenerate: $|N, 0\rangle,|N-1,1\rangle, \cdots|0, N\rangle$ all have the that same energy.
e. Writing $\psi(r, \phi)=e^{-\frac{M \omega}{2 \hbar} r^{2}} f(r) e^{i m \phi}$, determine the boundary conditions on $f(r)$ and $e^{i m \phi}$, and so the type of values m can have. (The sign in the exponent was an obvious typo; the Student is, however, graded on consistency and correctness of their work.)
Soln: There are no real boundary conditions to be imposed on $e^{i m \phi}$, since ϕ varies in a circle, without a boundary. However, we do have to require $\psi(r, \phi)$ to be periodic, i.e., that $\psi(r, \phi+2 \pi) \equiv \psi(r, \phi)$. Thus $e^{i m(\phi+2 \pi)}=e^{i m \phi}$ implies that $e^{i 2 m \pi}=1$, whence $m \in \mathbb{Z}$, i.e., m must be an integer.

Since $W(r)>E$ when $r \rightarrow \infty$ for any E, we know that all states are localized, $\psi(r, \phi) \rightarrow 0$ as $r \rightarrow \infty$, and the boundary condition for $f(r)$ is that it may diverge, but not too badly so that $e^{-\frac{\alpha}{2} r^{2}} f(r) \rightarrow 0$ still holds.
f. Substituting this wave-function into the Schrödinger equation, determine and solve the differential equation for $f(r)$, subject to the boundary conditions. Show that this solution precisely corresponds to the Cartesian one.
Soln: In polar coordinates, the Schrödinger equation for our problem is

$$
\left[\frac{1}{r} \frac{\partial}{\partial r} r \frac{\partial}{\partial r}+\frac{1}{r^{2}} \frac{\partial^{2}}{\partial \phi^{2}}+k^{2}-\alpha^{2} r^{2}\right] \psi(r, \phi)=0
$$

where $k^{2}=\frac{2 M E}{\hbar^{2}}$ and $\alpha=\frac{M \omega}{\hbar}$. Since

$$
\frac{\partial^{2}}{\partial \phi^{2}} \psi(r, \phi)=-m^{2} \psi(r, \phi)=-m^{2} e^{\frac{\alpha}{2} r^{2}} f(r) e^{i m \phi}
$$

upon substituting $\psi(r, \phi)=e^{-\frac{M \omega}{2 \hbar} r^{2}} f(r) e^{i m \phi}$, the Schrödinger equation becomes

$$
\left[f^{\prime \prime}+\left(\frac{1}{r}-2 \alpha r\right) f^{\prime}+\left(k^{2}-2 \alpha-\frac{m^{2}}{r^{2}}\right) f\right] e^{-\frac{\alpha}{2} r^{2}}=0 .
$$

We seek solutions in the form $f(r)=\sum_{\ell=0}^{\infty} c_{\ell} r^{\ell+s}$, and obtain:

$$
\sum_{\ell=0}^{\infty} c_{\ell}\left[(\ell+s)(\ell+s-1)+(\ell+s)-m^{2}\right] r^{\ell+s-2}-\sum_{\ell=0}^{\infty} c_{\ell}\left[2 \alpha(\ell+s)+2 \alpha-k^{2}\right] r^{\ell+s}=0
$$

i.e.,

$$
\sum_{\ell=0}^{\infty} c_{\ell}\left[(\ell+s)^{2}-m^{2}\right] r^{\ell+s-2}-\sum_{\ell=0}^{\infty} c_{\ell}\left[2 \alpha(\ell+s+1)-k^{2}\right] r^{\ell+s}=0
$$

To add up the two sums, we shift the summation index in the first sum, $\ell \rightarrow \ell+2$, and write the initial two terms separately:
$c_{0}\left[s^{2}-m^{2}\right] r^{s-2}+c_{1}\left[(s+1)^{2}-m^{2}\right] r^{s-1}+\sum_{\ell=0}^{\infty}\left\{c_{\ell+2}\left[(\ell+s)^{2}-m^{2}\right]-c_{\ell}\left[2 \alpha(\ell+s+1)-k^{2}\right]\right\} r^{\ell+s}=0$.
Since different powers of any variable are linearly independent, the coefficient of each power of r must vanish separately. Starting with the coefficient of r^{s-2}, we conclude that $s= \pm m$ since $c_{0} \neq 0$ (the series must have an initial term). Then, the vanishing of the coefficient of $r^{s-1}, c_{1}\left[(s+1)^{2}-m^{2}\right]=c_{1}(1 \pm 2 m)$, implies that $c_{1}=0$ as $(1 \pm 2 m) \neq 0$ for integer m. The vanishing of the remaining coefficients, enclosed in the curly braces, then implies that:

$$
\begin{equation*}
c_{\ell+2}=c_{\ell} \frac{2 \alpha(\ell+s+1)-k^{2}}{(\ell+s)^{2}-m^{2}}=c_{\ell} \frac{2 \alpha(\ell \pm m+1)-k^{2}}{\ell(\ell \pm 2 m)} . \tag{*}
\end{equation*}
$$

Note: $c_{1}=0$ then implies that $c_{\ell}=0$ for all odd $\ell ;$ i.e., we must restrict to even ℓ !
This defines $f(r)=\sum_{\ell=0}^{\infty} c_{\ell} r^{\ell+s}$, with the coefficients defined in Eq. (*). We must ensure, however, that this solution does not destroy the expected behavior, $e^{-\frac{\alpha}{2} r^{2}} f(r) \rightarrow 0$. To this end, we need to determine how fast does this series diverge for $r \rightarrow \infty$. Since for large r, larger powers of it have larger values, we consider

$$
c_{\ell+2}=c_{\ell} \frac{2 \alpha(\ell \pm m+1)-k^{2}}{\ell(\ell \pm 2 m)} \xrightarrow{\ell \rightarrow \infty} \frac{2 \alpha}{\ell} c_{\ell}
$$

which is the recursion relation for the function $F(r)=e^{+2 \alpha r^{2}}$. That is,

$$
\sum_{\ell=0}^{\infty} c_{\ell} r^{\ell+s} \sim e^{+2 \alpha r^{2}}, \quad \text { for } \quad r \rightarrow \infty
$$

and this does not obey the stated boundary condition. The only solution is to choose $k^{2}=2 M E / \hbar^{2}$ so that the recursion relation (*) begins to produce zeroes after some ℓ. To that end, choose $k^{2}=2 \alpha(N+1)$, and find that $c_{N \mp m}$ is the last non-zero coefficient. Then, the solution becomes a polynomial of $\left(\ell_{\max } \pm m\right)=N$ th order, and the boundary condition is obeyed. The relation $k^{2}=2 \alpha(N+1)$ then implies that

$$
\frac{2 M E_{N}}{\hbar^{2}}=2 \frac{M \omega}{\hbar}(N+1), \quad \Rightarrow \quad E_{N}=\hbar \omega(N+1)
$$

Since E_{N} does not depend on m, the values of m (for a fixed N) count the degeneracy of the energy level E_{N}. Recalling that $\ell_{\max }=N \mp m \geq 0$, it follows that $m \in[-N,+N]$, just like ν in the Cartesian solution above. Furthermore, remembering that $c_{1}=0$ and the recursion relation $(*)$ jointly imply that $c_{\ell}=0$ for all odd ℓ, we require that $\ell_{\max }=N \mp m$ is even, whereupon m can only change in even units-just like ν in the Cartesian solution.

This almost proves the equivalence of the two solutions; what remains is to show that the actual wave-functions agree: $\psi_{N, m}(r, \phi)=\psi_{n_{x}, n_{y}}(x, y)$, with $N=n_{x}+n_{y}$ and $m=n_{x}-n_{y}$. We leave that to the diligent Student.
3. A Hydrogen atom has its electron in an " L orbital," i.e., with $\ell=1$. The spin of the electron is $\frac{1}{2}$, as is that of the proton (about which the electron orbits).
a. Calculate the possible values of the total angular momentum of the orbiting electron, $\hat{\mathbf{J}}=\hat{\mathbf{L}}+\hat{\mathbf{S}}_{e}$.
Soln: Consider doing this first by using the triangle inequality:

$$
\begin{equation*}
\frac{1}{2}=\left|\ell-s_{e}\right| \leq j \leq \ell+s_{e}=\frac{3}{2}, \quad \text { so } \quad j=\frac{1}{2}, \frac{3}{2} . \tag{=10pt}
\end{equation*}
$$

b. Calculate the possible values of the total angular momentum of the Hydrogen atom, $\hat{\mathbf{J}}_{H}=\hat{\mathbf{L}}+\hat{\mathbf{S}}_{e}+\hat{\mathbf{S}}_{p}$.
Soln: Consider doing this also first by using the triangle inequality:

$$
0=\left|\ell-s_{e}-s_{p}\right| \leq j_{H} \leq \ell+s_{e}+s_{p}=2, \quad \text { so } \quad j_{H}=0,1,2 .
$$

Now, the Student might complain: "Hold on, the four vector operators, $\hat{\mathbf{J}}_{H}, \hat{\mathbf{L}}, \hat{\mathbf{S}}_{e}, \hat{\mathbf{S}}_{p}$ don't form a triangle!" Indeed; they form a quadrangle. So the "triangle" rule needs to be iterated. Since $\hat{\mathbf{J}}_{H}=\hat{\mathbf{J}}+\hat{\mathbf{S}}_{p}$, we can write

$$
\min \left(\left|j-s_{p}\right|\right) \leq j_{H} \leq \max \left(j+s_{p}\right)
$$

so as to obtain the correct

$$
0=\min \left(\left|\frac{1}{2}-\frac{1}{2}\right|,\left|\frac{3}{2}-\frac{1}{2}\right|\right) \leq j_{H} \leq \max \left(\left(\frac{1}{2}+\frac{1}{2}\right),\left(\frac{3}{2}+\frac{1}{2}\right)\right)=2
$$

As far as obtaining the correct range, these relations suffice. However, they do not specify the number of times a particular value can be obtained. To this end, we do have to use the "table method" used in class; this is left for the diligent Student.
c. Calculate the possible eigenvalues of the operator $\hat{\mathbf{L}} \cdot \hat{\mathbf{S}}_{e}$.

Soln: As done in class, we square $\hat{\mathbf{J}}=\hat{\mathbf{L}}+\hat{\mathbf{S}}_{e}$ to obtain

$$
\hat{\mathbf{J}}^{2}=\hat{\mathbf{L}}^{2}+\hat{\mathbf{S}}_{e}^{2}+2 \hat{\mathbf{L}} \cdot \hat{\mathbf{S}}_{e},
$$

i.e.,

$$
\hat{\mathbf{L}} \cdot \hat{\mathbf{S}}_{e}=\frac{1}{2}\left[\hat{\mathbf{L}}^{2}+\hat{\mathbf{S}}_{e}^{2}-\hat{\mathbf{J}}^{2}\right],
$$

so that

$$
\left\langle\hat{\mathbf{L}} \cdot \hat{\mathbf{S}}_{e}\right\rangle=\frac{1}{2}\left[\ell(\ell+1)+s_{e}\left(s_{e}+1\right)-j(j+1)\right]=\frac{1}{2}\left[2+\frac{3}{4}-\left\{\begin{array}{c}
3 / 4 \\
15 / 4
\end{array}\right]=\left\{\begin{array}{c}
1 \\
-1 / 2
\end{array}\right.\right.
$$

for the two possible values, $j=\frac{1}{2}, \frac{3}{2}$.
d. Calculate the possible eigenvalues of the operator $\hat{\mathbf{L}} \cdot \hat{\mathbf{S}}_{p}$.

Soln: By the same token, we square $\hat{\mathbf{K}}=\hat{\mathbf{L}}+\hat{\mathbf{S}}_{p}$ to obtain

$$
\hat{\mathbf{L}} \cdot \hat{\mathbf{S}}_{p}=\frac{1}{2}\left[\hat{\mathbf{L}}^{2}+\hat{\mathbf{S}}_{p}^{2}-\hat{\mathbf{K}}^{2}\right],
$$

so that

$$
\left\langle\hat{\mathbf{L}} \cdot \hat{\mathbf{S}}_{p}\right\rangle=\left\{\begin{array}{c}
1 \\
-1 / 2
\end{array},\right.
$$

for the two possible values, $\left\langle\hat{\mathbf{K}}^{2}\right\rangle=\frac{3}{4}, \frac{15}{4}$, since all the numerics are the same as in the
previous problem.
[$=10 \mathrm{pt}$]
e. Calculate the possible eigenvalues of the operator $\hat{\mathbf{S}}_{p} \cdot \hat{\mathbf{S}}_{e}$.

Soln: By the same token, we square $\hat{\mathbf{S}}=\hat{\mathbf{S}}_{p}+\hat{\mathbf{S}}_{e}$ to obtain

$$
\hat{\mathbf{S}}_{p} \cdot \hat{\mathbf{S}}_{e}=\frac{1}{2}\left[\hat{\mathbf{S}}_{p}^{2}+\hat{\mathbf{S}}_{e}^{2}-\hat{\mathbf{S}}^{2}\right],
$$

and note that $\left\langle\hat{\mathbf{S}}^{2}\right\rangle=0,2$, i.e., $s=0,1$ for this sum. Thus,

$$
\left\langle\hat{\mathbf{L}} \cdot \hat{\mathbf{S}}_{e}\right\rangle=\frac{1}{2}\left[s_{p}\left(s_{p}+1\right)+s_{e}\left(s_{e}+1\right)-s(s+1)\right]=\left\{\begin{array}{c}
3 / 4 \\
-1 / 4
\end{array},\right.
$$

for the two possible values, $s=0,1$.

$$
[=10 \mathrm{pt}]
$$

f. Is the total angular momentum of the Hydrogen atom half-integral? Explain.

Soln: First of all, (half-)integrality of an angular momentum (-like) operator $\hat{\mathbf{J}}$ refers to the (half-)integrality of the quantity j specifying the eigenvalues of ${ }^{\mathcal{N}}$ as $j(j+1)$.

So, no, the total angular momentum of a Hydrogen atom is not half-integral; it's integral. The reason is that the Hydrogen atom system includes both one electron and one proton, and the total angular momentum of the whole Hydrogen atom system is then $\hat{\mathbf{J}}_{H}$, as defined above to include the (half-integral) spins of each of the proton and the electron, and the (integral) orbital angular momentum of the electron-proton system. For this j_{H} we have found integer eigenvalues, $j_{H}=0,1,2$.

In general, a composite system consisting of an even number of separate subsystems (fermions) with half-integral spins and any number of separate subsystems (bosons) with integral spins will have an integral total angular momentum. Conversely, a composite system consisting of an odd number of separate subsystems (fermions) with half-integral spins and any number of separate subsystems (bosons) with integral spins will have a halfintegral total angular momentum. Thus, the Hydrogen atom is bosonic, but the Deuterium atom is fermionic (it has an extra neutron, with spin $\frac{1}{2}$, in the nucleus), while the Tritium atom is again bosonic (it has two extra neutrons in the nucleus), etc.

[^0]: Soln: Writing

 $$
 \left|n_{x}, n_{y}\right\rangle=\left|n_{x}\right\rangle_{x}\left|n_{y}\right\rangle_{y}, \quad \text { where }
 $$

