
HOWARD UNIVERSITY
WASHINGTON, D.C. 20059

DEPARTMENT OF PHYSICS AND ASTRONOMY 2355 Sixth Str., NW, TKH Rm.215
(202)-806-6245 (Main Office) thubsch@howard.edu
(202)-806-5830 (FAX) (202)-806-6257

Quantum Mechanics I 9th Oct. ’98.
1st Midterm Exam Solutions (T. Hübsch)

Figure 1. A sketch of the potentials in problems 1, 2, and 4.a–4.d.

1.a: As in all piece-wise constant potential problems, we divide the domain of x into
two regions, according to whether E > V (x) or E < V (x). Note that it is unnecessary
to consider x < 0, as the potential is infinitely strong there and the wave function must
vanish. The first region is then 0 < x < a, where E < V (x), which is where we expect
an oscillatory solution. The solutions in the second region (a < x < ∞) is exponentially
decaying, and in addition. Therefore, we can write

ψ1 = A sin(kx+ δ) , ψ2 = Be−κx , (1)

where h̄κ =
√

2m|E|, h̄k =
√

2m(E + V0). The matching conditions are: ψ1(0)=0 which
implies δ=0, ψ1(a)=ψ2(a) and ψ′1(a)=ψ′2(a).

1.b: The wave-function in the first region has been chosen so as to most effectively find
the energy quantization condition—as discussed in class. In calculating the logarithmic
derivative, a single function like sin(kx) is preferable to a linear combination of two ex-
ponentials. We calculate 1

ψ
dψ
dx for each of ψ1, ψ2 and impose the matching across the two

boundary at x = a of the logarithmic derivative:

1
ψ1

dψ1

dx

∣∣∣
x=−a

= k cot[k(−a)] = −k cot(ka) !=
1
ψ2

dψ2

dx

∣∣∣
x=−a

= κ . (2)

Therefore
nπ − arctan

(k
κ

)
= ka , (3)
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Figure 2. A sketch of a sample wave function for problems: 1.a and 1.c with the energy
level as given, and 4.a–d for all possible energy levels. The choice of (a)symmetry of the
wave functions was random.

The nπ must be included because of the periodicity of arctan. This then is the relation
which determines E; nothing more, nothing less. One can merely make it more explicit by
substituting the expressions for k and κ:

nπ − arctan
(√V0+E

|E|
)

=
a

h̄

√
2m(V0+E) . (4)

1.c: The limit V0 → ∞ has been discussed in class: the V0 → ∞ limit then simply
reproduces the infinite potential well, where the wave function must vanish at both ‘walls’,
at 0 and at a; there are no conditions on the derivatives of the wave functions.

1.d: The wave function can be written as ψ = A sin(kx), ensuring that ψ(0) = 0. The
other boundary condition, ψ(a) = 0 then sets kn = nπ/a. This then produces the energy
quantization condition

En =
n2π2h̄2

2ma2
. (5)

The ground state being ψ1, E1 = π2h̄2

2ma2 is the energy of the ground state.
Note that the result (5) could have been obtained from (3) through a careful evaluation

of the limits: Upon shifting as described in part c., E now being positive, we have

nπ − arctan
(√V0+E

|E|
)

=
a

h̄

√
2m(V0+E) . (6)
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In the limit V0 → +∞,
√

E
V0−E → 0, and since arctan 0 = 0, the result (5) follows.

2.a: Before we deal with parts a. and b., note that only the energies E > −λa2 are allowed:
states with energies below that would diverge and so be utterly unnormalizable.

For negative energies, −λa2 < E < 0, only the region between the classical
turning points, ±b, is allowed. These turning points occur where E=V (±b), and so
b =

√
a2 − |E|/λ; clearly, 0 < b < a.

Let us write

h̄k(x) def=
√

2m
(
E−λ(x2−a2)

)
, h̄κ(x) def=

√
2m
(
λ(x2−a2)−E

)
. (7)

The WKB solutions are either

ψ(x) =
A√
k(x)

e
i
∫ x
c

dx k(x) +
B√
k(x)

e
−i
∫ x
c

dx k(x)
, (8)

for the classically allowed region, or

ψ(x) =
C√
κ(x)

e
−
∫ x
c

dx κ(x) +
D√
κ(x)

e
+
∫ x
c

dx κ(x)
, (9)

for the classically forbidden region, where c denotes the left hand side turning point, to be
replaced by−b and +b, as appropriate—closely following the case examined on p.108–109.

For x < −b we have

ψ1(x) =
C√
κ(x)

e
−
∫ x
−b

dx κ(x)
+

D√
κ(x)

e
+
∫ x
−b

dx κ(x)
. (10)

Notice that in these integrals, the lower limit is to the right of the upper one! Thus, for
x < −b, these integrals are negative, so the first term diverges towards large and negative
x, while the second term decays there. The boundary condition limx→−∞ ψ(x) = 0 then
forces us to set C = 0.

In the region −b < x < +b, the WKB solution becomes

ψ2(x) =
A√
k(x)

e
+i
∫ x
−b

dx k(x)
+

B√
k(x)

e
−i
∫ x
−b

dx k(x)
,

=
Ae+iφ√
k(x)

e
+i
∫ x

+b
dx k(x)

+
Be−iφ√
k(x)

e
−i
∫ x

+b
dx k(x)

,

(11)

where

φ
def=
∫ +b

−b
dxk(x) . (12)

The two constants A,B are determined in terms of C,D above through the WKB matching
conditions, Eqs. (4.52a,b) in Park.

Finally, in the third region x > +b, the WKB solution takes the form

ψ3(x) =
C ′√
κ(x)

e
−
∫ x
b

dx κ(x) +
D′√
κ(x)

e
+
∫ x
b

dx κ(x)
, (13)
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where C ′, D′ are determined from A,B using Park’s Eq. (4.51a, b). This produces (using
that C = 0):

C ′ = 1
2

(
ϑ∗(Ae+iφ) + ϑ(Be−iφ)

)
= 1

2

(
ϑ∗(ϑ∗De+iφ) + ϑ(ϑDe−iφ)

)
,

= 1
2i (e

+iφ − e−iφ)D = D sinφ ; (14a)

D′ = ϑ(Ae+iφ) + ϑ∗(Be−iφ) = ϑ(ϑ∗De+iφ) + ϑ∗(ϑDe−iφ) ,

= (e+iφ + e−iφ)D = 2D cosφ . (14b)

since ϑ2 = i and (ϑ∗)2 = −i—just as given in the display preceding Eq. (4.55a). The
complete derivation here is included for the Students’ benefit; it was not required in the
test. Quoting the correct equations from the text sufficed.

It now remains to enforce the last boundary condition, limx→∞ ψ(x) = 0.

2.b: The boundary condition limx→∞ ψ(x) = 0 forces us to set D′ = 0 (as this is now the
term that diverges for large and positive x). Since D′ = D cosφ and D 6= 0 (or else the
whole wave functions vanishes trivially), we must require that φ = (n+ 1

2 )π.
Now as to the integral:

φ =
∫ +b

−b
dxk(x) =

√
2m
h̄

∫ b

−b
dx
√
E − λ(x2−a2) , (15a)

=

√
2mλ
h̄

2
∫ b

0

dx
√
b2−x2 =

√
2mλ
h̄

2b2
∫ 1

0

dξ
√

1−ξ2 , (15b)

where between the first and the second row we used that E = λ(b2−a2), and then in-
troduced the dimensionless variable ξ = x/b. The advantage of these modifications is in
obtaining a result with a purely numerical integral; that is, the value of the as yet un-
calculated integral is a dimensionless number—all the dependence on the observables has
already been made explicit. The integral itself is not difficult:∫

dξ
√

1− ξ2 = 1
2ξ
√

1− ξ2 + 1
2 arcsin(ξ) ,

∫ 1

0

dξ
√

1− ξ2 =
π

4
.

Thus,

(n+ 1
2 )π != φ =

√
2mλ
h̄

2
(
a2 +

En
λ

)π
4
, (16)

or,

En =

√
2λ
m

(n+ 1
2 )− λa2 . (17)

Notice that this makes perfect sense: within −b < x < b, the potential is that of the linear
harmonic oscillator with the frequency

√
2λ/m, with the minimum of the potential being

at −λa2 rather than at zero.

3. Following the hint, finding the asymptotic form of the wave function for x→∞ implies
solving the Schrödinger equation approximately, working to highest order in x. So, our
case being k = 4, we consider

ψ′′ − 2m
h̄2 [λx2k − E]ψ = 0 , k ≥ 1 , (18)
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E may be neglected compared to V (x) when x is large.
as in class, we calculate

ψ∞(x) = e−αx
β

, α, β constants , (19a)

ψ′∞(x) = −αβ xβ−1 e−αx
β

, (19b)

ψ′′∞(x) =
(
(−αβ xβ−1)2 − αβ(β−1)xβ−2

)
e−αx

β

,

=
(
α2β2x2β−2 − αβ(β−1)xβ−2

)
e−αx

β

,

≈ (α2m2x2β−2) e−αx
β

, x→∞, m > 0 . (19c)

The Schrödinger equation then implies (to highest order in x):

(αβ)2 x2β−2 e−αx
β ≈ 2m

h̄2 λx
2k e−αx

β

. (20)

For this to hold for any x, both the powers and the coefficients must be set equal, whence
m = k+1 and then α =

√
2mλ/(βh̄) =

√
2mλ/[(k+1)h̄], and so finally

ψ(x) ≈ exp
{
−
√

2mλ
(k+1)h̄x

k+1
}
, or, ψ(x) ≈ e−

√
2mλ
5h̄ x5

. (21)

4.a: Firstly, note that the potential diverges (approaches −∞) when x → −1; thus, the
minimum of V (x) is −∞, is at x = −1 and there is no lower bound for E. Furthermore, the
potential V (x) = V0 log |x+1| grows unboundedly for both x→ ±∞. Thus, no matter how
high an energy level, E, we choose, for some sufficiently negative or sufficiently positive x,
the potential function will be bigger than E. Therefore, there are only bound (localized)
states for this potential, and all energies are discrete (quantized); see Fig. 2. WKB provides
a good estimate for the energy levels:

(n+ 1
2 )π !=

√
2m
h̄

∫ b

a

dx
√
En − V0 log |x+ 1| , (22)

where a = −(1 + eE/V0) and b = 1 − eE/V0 . Amusingly, the integral in fact does have an
exact solution (dividing the range into two parts, x < −1 and x > −1, and using:∫

dξ
√
En − V0 log ξ = ξ

√
En − V0 log ξ + 1

2e
En/V0

√
πV0

[
1 + Erf

(
En
V0
− log ξ

)]
. (23)

4.b: The potential V (x) = V0/(1+x2) approaches zero at both x → ±∞, and which
is also the minimum of V (x). Thus, the energies, E are bounded from below, by zero;
that is, E ≥ 0. At the same time, since the potential vanishes at both ‘ends’, no boundary
conditions are obtained for either of x→ ±∞, and none of the stationary states are bound:
they are all oscillatory; see Fig. 2.

4.c: The potential V (x) = −V0/(1+x2) has its minimum at V (0) = −V0. Thus the energy
is bounded from below, by −V0; that is, E > −V0. The limit of V (x) at either x → ±∞
is zero. Thus, for E > 0, there is no boundary condition on the stationary states at either
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of x → ±∞, and these states are ‘scattering’ states, and E is continuous. However, for
−V0 < E < 0, for sufficiently negative and for sufficiently positive values of x, the energy
E is less than the potential, and the wave functions must decay towards x→ ±∞. These
are the bound states. The turning points are at b = ±

√
V0/|E| − 1. Again, we use WKB

to obtain an estimate:

(n+ 1
2 )π !=

√
2m
h̄

∫ b

−b
dx
√
En − V0/(1 + x2) , (24)

which is a fairly complicated, but still soluble integral.

4.d: The potential V (x) = 0 for x < 0 and x > 2a, but V (x) = V0 sin(xπ/a) offers the
most diversity. Its minimum is min[V (x)] = −V0, at x = 3a/2, and its limits at either
x→ ±∞ are limx→±∞ V (x) = 0. Thus, the energies are bounded from below by −V0. On
the other hand, for E > 0, there can be no boundary conditions on the wave functions
(whose energies are now bigger than the potential at either of x → ±∞), and these are
the ‘scattering’ states, with continuous energies, E. So, the bound states are found only
for −V0 < E < 0, when the energy is less than the potential as x → ±∞. Again, we can
use WKB to estimate the energy levels:

(n+1)π !=
√

2m
h̄

∫ b2

b1

dx
√
En − V0 sin(xπ/a) , (25)

where the turning points, 0 < b1, b2 < 2a are the two solutions of E = V0 sin(xπ/a).
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