Howard University

Washington, DC 20059

Department of Physics and Astronomy (202)-806-6245 (Main Office)
(202)-806-5830 (fax)

2355 Sixth St., NW, TKH Rm. 215

8th Oct.'03.

DISCLAIMER: This solution set presents more detail than was required of the Student, and is meant as an additional resource for learning. Please do study not just the solutions as presented, but try also to understand the rationale behind the approach.

1. Given the two state vectors, $\left|u_{1}\right\rangle=\frac{1}{\sqrt{2}}\left[\begin{array}{l}1 \\ 1\end{array}\right]$, and $\left|u_{2}\right\rangle=\left[\begin{array}{l}0 \\ 1\end{array}\right]$,
a. prove that they form a complete basis for 2-dimensional vectors.

Solution
For them to form a (complete) basis for 2-dimensional vectors, the two $\left|u_{i}\right\rangle$'s must be linearly independent. This we prove by showing that the requirement

$$
\sum_{i=1}^{2} c_{i}\left|u_{i}\right\rangle=\frac{c_{1}}{\sqrt{2}}\left[\begin{array}{l}
1 \tag{=8pt}\\
1
\end{array}\right]+c_{2}\left[\begin{array}{l}
0 \\
1
\end{array}\right]=0, \quad \Rightarrow \quad\left\{\begin{array}{l}
c_{1} \stackrel{!}{=} 0 \\
\frac{c_{1}}{\sqrt{2}}+c_{2} \stackrel{!}{=} 0
\end{array}\right.
$$

which would hold only if both c_{1} and c_{2} vanish.
b. Specify the $\left\langle u_{i}\right|, i=1,2$ and show that this basis it not orthonormal.

Solution
For the $\left\langle u_{i}\right|$ to act on the column-vectors $\left|u_{i}\right\rangle$ and to produce (in general, complex) numbers, they must be hermitian-conjugate row-vectors:

$$
\left\langle u_{1}\right|=\frac{1}{\sqrt{2}}[1,1], \quad\left\langle u_{2}\right|=[0,1] .
$$

Non-orthogonality is proven by finding $\left\langle u_{i} \mid u_{j}\right\rangle \neq 0$ for any $i \neq j$. In this case:

$$
\left\langle u_{1} \mid u_{2}\right\rangle=\frac{1}{\sqrt{2}}[1,1]\left[\begin{array}{l}
0 \\
1
\end{array}\right]=\frac{1}{\sqrt{2}}(1 \cdot 0+1 \cdot 1)=\frac{1}{\sqrt{2}} \neq 0
$$

Since $\left\langle u_{i} \mid u_{j}\right\rangle \neq 0$ when $i \neq j$, this basis, albeit complete, is not orthogonal.
c. Construct an orthonormal basis $\left\{\left|v_{1}\right\rangle=\left|u_{1}\right\rangle,\left|v_{2}\right\rangle=?\right\}$.

Solution
We start with the $\left|v_{1}\right\rangle=\left|u_{1}\right\rangle$, as instructed, write $\left|v_{2}\right\rangle=a\left|u_{1}\right\rangle+b\left|u_{2}\right\rangle$, and require orthogonality:

$$
0 \stackrel{!}{=}\left\langle v_{1} \mid v_{2}\right\rangle=\left\langle u_{1}\right|\left[a\left|u_{1}\right\rangle+b\left|u_{2}\right\rangle\right]=a+\frac{b}{\sqrt{2}}, \quad \Rightarrow \quad b=-\sqrt{2} a
$$

and so

$$
\left|v_{1}\right\rangle=\frac{a}{\sqrt{2}}\left[\begin{array}{l}
1 \\
1
\end{array}\right]-\sqrt{2} a\left[\begin{array}{l}
0 \\
1
\end{array}\right]=\frac{a}{\sqrt{2}}\left[\begin{array}{r}
1 \\
-1
\end{array}\right], \quad \text { and } \quad\left\langle v_{2}\right|=\frac{a}{\sqrt{2}}[1,-1] .
$$

Finally, we normalize:
[$=15 \mathrm{pt}$]

$$
1 \stackrel{!}{=}\left\langle v_{2} \mid v_{2}\right\rangle=\frac{|a|^{2}}{2}[1,-1]\left[\begin{array}{r}
1 \\
-1
\end{array}\right]=\frac{|a|^{2}}{2} \cdot 2, \quad \Rightarrow \quad\left|v_{2}\right\rangle=\frac{1}{\sqrt{2}}\left[\begin{array}{r}
1 \\
-1
\end{array}\right] .
$$

d. Construct the projection operators $\hat{\mathrm{P}}_{i}=\left|v_{i}\right\rangle\left\langle v_{i}\right|$ and prove that $\sum_{i=1}^{2} \hat{\mathrm{P}}_{i}=\mathbb{1}$, and that $\hat{\mathrm{P}}_{i} \hat{\mathrm{P}}_{j}=\delta_{i j} \hat{\mathrm{P}}_{j}, \forall i, j=1,2$.
Solution_

$$
\hat{\mathrm{P}}_{1}=\left|v_{1}\right\rangle\left\langle v_{1}\right|=\frac{1}{2}\left[\begin{array}{l}
1 \\
1
\end{array}\right][1,1]=\left[\begin{array}{ll}
1 / 2 & 1 / 2 \\
1 / 2 & 1 / 2
\end{array}\right],
$$

and

$$
\hat{\mathrm{P}}_{2}=\left|v_{2}\right\rangle\left\langle v_{2}\right|=\frac{1}{2}\left[\begin{array}{r}
1 \\
-1
\end{array}\right][1,-1]=\left[\begin{array}{rr}
1 / 2 & -1 / 2 \\
-1 / 2 & 1 / 2
\end{array}\right] .
$$

And, with these, indeed:

$$
\left[\begin{array}{ll}
1 / 2 & 1 / 2 \\
1 / 2 & 1 / 2
\end{array}\right]+\left[\begin{array}{rr}
1 / 2 & -1 / 2 \\
-1 / 2 & 1 / 2
\end{array}\right]=\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right],
$$

and, similarly,
[$=20 \mathrm{pt}$] $\left[\begin{array}{rr}1 / 2 & \pm^{1} / 2 \\ \pm^{1} / 2 & 1 / 2\end{array}\right]\left[\begin{array}{rr}1 / 2 & \pm^{1} / 2 \\ \pm^{1} / 2 & 1 / 2\end{array}\right]=\left[\begin{array}{rr}1 / 2 & \pm^{1} / 2 \\ \pm^{1} / 2 & 1 / 2\end{array}\right], \quad$ but $\quad\left[\begin{array}{ll}1 / 2 & 1 / 2 \\ 1 / 2 & 1 / 2\end{array}\right]\left[\begin{array}{rr}1 / 2 & -1 / 2 \\ -1 / 2 & 1 / 2\end{array}\right]=\left[\begin{array}{ll}0 & 0 \\ 0 & 0\end{array}\right]$.
2. An observable of the system in problem 1 is represented by $\hat{F}=\left[\begin{array}{rr}2 & 2 \\ 2 & -1\end{array}\right]$.
a. Determine all possible results of (single attempts of) measuring \hat{F}. Solution

Possible outcomes of single measurements are the eigenvalues of \hat{F}. These we obtain by solving the secular equation:

$$
0 \stackrel{!}{=} \operatorname{det}[\hat{F}-f \mathbb{1}]=\left|\begin{array}{cc}
2-f & 2 \tag{=7pt}\\
2 & -1-f
\end{array}\right|=-(2-f)(1+f)-4=(f+2)(f-3),
$$

so the possible single measurement results are $f=-2,+3$.
b. Determine all eigenvectors of \hat{F}.

Solution

$$
\text { Writing } \hat{F}|f\rangle=f|f\rangle \text { as }[\hat{F}-f \mathbb{1}]|f\rangle=0 \text {, we calculate for each of } f=-2,+3 \text { : }
$$

$$
\begin{gathered}
\left.0 \stackrel{!}{=}[\hat{F}+2 \mathbb{1}]|-2\rangle=\left[\begin{array}{ll}
4 & 2 \\
2 & 1
\end{array}\right]\left[\begin{array}{l}
x \\
y
\end{array}\right], \quad \Rightarrow \begin{array}{r}
4 x+2 y=0 \\
2 x+y=0
\end{array}\right\} \quad \Rightarrow \quad|-2\rangle=\frac{1}{\sqrt{5}}\left[\begin{array}{r}
1 \\
-2
\end{array}\right] . \\
\left.0 \stackrel{!}{=}[\hat{F}-3 \mathbb{1}]|+3\rangle=\left[\begin{array}{rr}
-1 & 2 \\
2 & -4
\end{array}\right]\left[\begin{array}{l}
x \\
y
\end{array}\right], \quad \Rightarrow \begin{array}{r}
-x+2 y=0 \\
2 x-4 y=0
\end{array}\right\} \quad \Rightarrow \quad|+3\rangle=\frac{1}{\sqrt{5}}\left[\begin{array}{l}
2 \\
1
\end{array}\right] .
\end{gathered}
$$

c. Calculate the expectation value of \hat{F} in the pure state v_{1}.

Solution
This expectation value equals $\operatorname{Tr}\left[\hat{\rho}_{u_{1}} \hat{F}\right]=\left\langle u_{1}\right| \hat{F}\left|u_{1}\right\rangle$, and we can calculate it directly:

$$
\langle\hat{F}\rangle_{u_{1}}=\operatorname{Tr}\left[\left[\begin{array}{ll}
1 / 2 & 1 / 2 \\
1 / 2 & 1 / 2
\end{array}\right] \cdot\left[\begin{array}{rr}
2 & 2 \\
2 & -1
\end{array}\right]\right]=\operatorname{Tr}\left[\begin{array}{ll}
2 & 1 / 2 \\
2 & 1 / 2
\end{array}\right]=\frac{5}{2},
$$

or

$$
\langle\hat{F}\rangle_{u_{1}}=\frac{1}{2}[1,1]\left[\begin{array}{rr}
2 & 2 \tag{=5pt}\\
2 & -1
\end{array}\right]\left[\begin{array}{l}
1 \\
1
\end{array}\right]=\frac{1}{2}[1,1]\left[\begin{array}{l}
4 \\
1
\end{array}\right]=\frac{5}{2},
$$

d. Calculate the expectation value of \hat{F} in the impure state $\hat{\rho}=\frac{1}{4} \hat{\mathrm{P}}_{1}+\frac{3}{4} \hat{\mathrm{P}}_{2}$. Solution

Doing the straightforward matrix algebra:

$$
\hat{\rho}=\frac{1}{4} \hat{\mathrm{P}}_{1}+\frac{3}{4} \hat{\mathrm{P}}_{2}=\frac{1}{4}\left[\begin{array}{ll}
1 / 2 & 1 / 2 \\
1 / 2 & 1 / 2
\end{array}\right]+\frac{3}{4}\left[\begin{array}{rr}
1 / 2 & -1 / 2 \\
-1 / 2 & 1 / 2
\end{array}\right]=\left[\begin{array}{rr}
1 / 2 & -1 / 4 \\
-1 / 4 & 1 / 2
\end{array}\right]
$$

we have that

$$
\langle\hat{F}\rangle_{\rho}=\operatorname{Tr}\left[\left[\begin{array}{rr}
1 / 2 & -1 / 4 \\
-1 / 4 & 1 / 2
\end{array}\right] \cdot\left[\begin{array}{rr}
2 & 2 \\
2 & -1
\end{array}\right]\right]=\operatorname{Tr}\left[\begin{array}{cc}
1 / 2 & 5 / 4 \\
1 / 2 & -1
\end{array}\right]=-\frac{1}{2} .
$$

Alternatively, using the linearity of $\operatorname{Tr}[]$, we have that

$$
\begin{aligned}
\langle\hat{F}\rangle_{\rho} & =\operatorname{Tr}\left[\left(\frac{1}{4} \hat{\mathrm{P}}_{1}+\frac{3}{4} \hat{\mathrm{P}}_{2}\right) \hat{F}\right]=\frac{1}{4} \operatorname{Tr}\left[\hat{\mathrm{P}}_{1} \hat{F}\right]+\frac{3}{4} \operatorname{Tr}\left[\hat{\mathrm{P}}_{2} \hat{F}\right]=\frac{1}{4}\left\langle v_{1}\right| \hat{F}\left|v_{1}\right\rangle+\frac{3}{4}\left\langle v_{2}\right| \hat{F}\left|v_{2}\right\rangle, \\
& =\frac{1}{4}\left(\frac{1}{2}[1,1]\left[\begin{array}{rr}
2 & 2 \\
2 & -1
\end{array}\right]\left[\begin{array}{l}
1 \\
1
\end{array}\right]\right)+\frac{3}{4}\left(\frac{1}{2}[1,-1]\left[\begin{array}{rr}
2 & 2 \\
2 & -1
\end{array}\right]\left[\begin{array}{r}
1 \\
-1
\end{array}\right]\right)=\frac{1}{4}\left(\frac{5}{2}\right)+\frac{3}{4}\left(-\frac{3}{2}\right)=-\frac{1}{2} .
\end{aligned}
$$

Notice that this is not a pure state, so that there exists no $|\psi\rangle$ such that $\langle\hat{F}\rangle_{\rho}$ would be calculable as $\langle\psi| \hat{F}|\psi\rangle$ for all hermitian \hat{F} 's.

$$
[=10 \mathrm{pt}]
$$

e. Calculate the probability that the measurement of the observable \hat{F} in the system in state pure state v_{1} would turn out to be 3 .
Solution
As given in the text, and used in the homework solution, $\operatorname{Prob}(\hat{F}=f \mid \hat{\rho})=\operatorname{Tr}\left[\hat{\rho} \hat{\mathrm{P}}_{f}\right]$. Since $\hat{\mathrm{P}}_{f} \stackrel{\text { def }}{=}|f\rangle\langle f|$, and for the pure state $\hat{\rho}_{v_{1}}=\left|v_{1}\right\rangle\left\langle v_{1}\right|$, we have that

$$
\operatorname{Prob}(\hat{F}=f \mid \hat{\rho})=\operatorname{Tr}[\hat{\rho}|f\rangle\langle f|]=\langle f| \hat{\rho}|f\rangle, \quad=\operatorname{Tr}\left[\left|v_{1}\right\rangle\left\langle v_{1}\right| \hat{\mathrm{P}}_{f}\right]=\left\langle v_{1}\right| \hat{\mathrm{P}}_{f}\left|v_{1}\right\rangle
$$

that is,

$$
\operatorname{Prob}(\hat{F}=f \mid \hat{\rho})=\operatorname{Tr}\left[\left|v_{1}\right\rangle\left\langle v_{1}\right||f\rangle\langle f|\right]=\left\langle f \mid v_{1}\right\rangle\left\langle v_{1} \mid f\right\rangle=\left|\left\langle v_{1} \mid f\right\rangle\right|^{2} .
$$

Alternatively (as done in other texts focusing on the wave-functions), we can expand $\left|v_{1}\right\rangle=$ $c_{-2}|-2\rangle+c_{+3}|+3\rangle$, use the orthonormalization of the $|f\rangle$ to obtain that $\left\langle+3 \mid v_{1}\right\rangle=c_{+3}$ is
the probability amplitude, and deduce that $\operatorname{Prob}(\hat{F}=f \mid \hat{\rho})=\left|c_{f}\right|^{2}=\left|\left\langle f \mid v_{1}\right\rangle\right|^{2}$, in agreement with the above, more direct calculation.

For our case at hand,

$$
\operatorname{Prob}\left(\hat{F}=3 \mid \hat{\rho}_{v_{1}}\right)=\left|\left\langle v_{1} \mid+3\right\rangle\right|^{2}=\left|\frac{1}{\sqrt{2}}[1,1] \cdot \frac{1}{\sqrt{5}}\left[\begin{array}{l}
2 \\
1
\end{array}\right]\right|^{2}=\left|\frac{3}{\sqrt{10}}\right|^{2}=\frac{9}{10} .
$$

f. Calculate the probability that the measurement of the observable \hat{F} in the system in impure state with $\hat{\rho}=\frac{1}{4} \hat{\mathrm{P}}_{1}+\frac{3}{4} \hat{\mathrm{P}}_{2}$ would turn out to be 3 .

Solution

Using above results, we have that $\operatorname{Prob}(\hat{F}=f \mid \hat{\rho})=\langle f| \hat{\rho}|f\rangle$ now is:

$$
\operatorname{Prob}(\hat{F}=3 \mid \hat{\rho})=\frac{1}{5}[2,1]\left[\begin{array}{cc}
1 / 2 & -1 / 4 \\
-1 / 4 & 1 / 2
\end{array}\right]\left[\begin{array}{l}
2 \\
1
\end{array}\right]=\frac{3}{10} .
$$

We could have also calculated this using the linearity of $\operatorname{Tr}[]$:

$$
\begin{aligned}
\operatorname{Prob}(\hat{F}=f \mid \hat{\rho}) & =\operatorname{Tr}\left[\left(\frac{1}{4} \hat{\mathrm{P}}_{1}+\frac{3}{4} \hat{\mathrm{P}}_{2}\right) \hat{\mathrm{P}}_{f}\right]=\frac{1}{4} \operatorname{Tr}\left[\hat{\mathrm{P}}_{1} \hat{\mathrm{P}}_{f}\right]+\frac{3}{4} \operatorname{Tr}\left[\hat{\mathrm{P}}_{2} \hat{\mathrm{P}}_{f}\right], \\
& =\frac{1}{4}\left|\left\langle v_{1} \mid f\right\rangle\right|^{2}+\frac{3}{4}\left|\left\langle v_{2} \mid f\right\rangle\right|^{2}
\end{aligned}
$$

Thus, $\operatorname{Prob}(\hat{F}=3 \mid \hat{\rho})=\frac{1}{4}\left|\left\langle v_{1} \mid+3\right\rangle\right|^{2}+\frac{3}{4}\left|\left\langle v_{2} \mid+3\right\rangle\right|^{2}=\frac{1}{4}\left|\frac{1 \cdot 2+1 \cdot 1}{\sqrt{2 \cdot 5}}\right|^{2}+\frac{3}{4}\left|\frac{1 \cdot 2-1 \cdot 1}{\sqrt{2 \cdot 5}}\right|^{2}=\frac{3}{10} . \quad[=20 \mathrm{pt}]$
3. Consider a particle under the influence of the potential: $W(x)=W_{0}$ for $x<0, W(x)=0$ for $0<x<a$, and $W(x)=+\infty$ for $a<x$, with $W_{0}, a>0$.
a. Sketch potential and determine the allowed values of the total energy.

Solution
For sketch, see figure below; allowed values are $E \geq \min (W(x))=0$.

b. State/specify all boundary conditions for stationary states with $0<E<W_{0}$. Solution

Besides the mathcing condition at $x=0$:

$$
\lim _{\epsilon \rightarrow 0} \psi(-\epsilon)=\lim _{\epsilon \rightarrow 0} \psi(+\epsilon), \quad \text { and } \quad \lim _{\epsilon \rightarrow 0} \psi^{\prime}(-\epsilon)=\lim _{\epsilon \rightarrow 0} \psi^{\prime}(+\epsilon)
$$

we also have that $\psi(a)=0$ and $\lim _{x \rightarrow-\infty} \psi(x)=0$.
c. Sketch the wave-function of a stationary state with $0<E<W_{0}$.

Solution
A wave-function is sketched in the figure on the previous page. Note that it satisfies the boundary conditions spelled out in the previous part. Furthermore, it identically vanishes in the region $x>a$, where $W(x)=+\infty$. Finally, note that it is oscillatory for $0<x<a$, where $E>W(x)$, but that it decays (to the left) for $x<0$ where $E<W(x)$. $\quad[=10 \mathrm{pt}]$ Now let $W_{0} \rightarrow \infty$.
d. Sketch potential and determine the allowed values of the total energy.

Solution
The sketch is given in the figure below; again $E \geq \min (W(x))=0$.

Note that all $\psi(x) \equiv 0$ for $x<0$ and $x>a$.
e. State all boundary conditions and sketch the wave-function of a stationary state.

Solution

This time, $W(x)=+\infty$ both when $x<0$ and when $x>a$: there $\psi(x) \equiv 0$. For $0<x<a$, allowed, positive values of E are always bigger than $W(x)$, and the solution is oscillatory, as sketched in the figure above. Thus, $\psi(0)=0=\psi(a)$ are the only boundary conditions. [=10pt]
f. Calculate the wave-number, k, and thus the energy of all stationary states.

Solution
Writing the solution as $\psi(x)=A \sin (k x+\delta)$, we find that:

$$
@ x=0: \quad \psi(0)=A \sin (\delta) \stackrel{!}{=} 0, \quad \Rightarrow \quad \delta=0
$$

and then:

$$
@ x=a:\left.\quad \psi(a)\right|_{\delta=0}=A \sin (k a) \stackrel{!}{=} 0, \quad \Rightarrow \quad k a=n \pi, \quad \text { for } \quad n=1,2,3, \ldots
$$

so that $k=n \pi / a$. Since $k^{2}=\frac{2 m}{\hbar^{2}} E$, we have that

$$
E_{n}=\frac{n^{2} \pi^{2} \hbar^{2}}{2 m a^{2}}, \quad n=1,2,3, \ldots
$$

are all the allowed values of the energy, corresponding to the stationary states with the wave-functions $\psi_{n}(x)=A \sin \left(\frac{n \pi \hbar}{a} x\right)$.

$$
[=10 \mathrm{pt}]
$$

