WASHINGTON, D.C. 20059

DEPARTMENT OF PHYSICS AND ASTRONOMY

Quantum Mechanics I

1st Midterm Exam Solutions

7th Oct. '02.
T. Hübsch

DISCLAIMER: This solution set presents more detail than was required of the Student, and is meant as an additional resource for learning. Please do study not just the solutions as presented, but try also to understand the rationale behind the approach.

1. Given two state vectors, $\left|u_{1}\right\rangle=\frac{1}{\sqrt{2}}\left[\begin{array}{l}1 \\ 0 \\ 1\end{array}\right]$, and $\left|u_{2}\right\rangle=\frac{1}{\sqrt{2}}\left[\begin{array}{l}0 \\ 1 \\ 1\end{array}\right]$,
a. determine a linearly independent $\left|u_{3}\right\rangle$ and prove that $\left\{\left|u_{i}\right\rangle, i=1,2,3\right\}$ form a complete and normalized (albeit not orthonormal) basis for 3-dimensional vectors.
Solution \qquad
For linear independence, we need to find (x, y, z) such that

$$
\frac{c_{1}}{\sqrt{2}}\left[\begin{array}{l}
1 \\
0 \\
1
\end{array}\right]+\frac{c_{2}}{\sqrt{2}}\left[\begin{array}{l}
0 \\
1 \\
1
\end{array}\right]+c_{3}\left[\begin{array}{l}
x \\
y \\
z
\end{array}\right]=0, \quad \Rightarrow \quad\left[\begin{array}{ccc}
1 & 0 & \sqrt{2} x \\
0 & 1 & \sqrt{2} y \\
1 & 1 & \sqrt{2} z
\end{array}\right]\left[\begin{array}{l}
c_{1} \\
c_{2} \\
c_{3}
\end{array}\right]=0
$$

would hold only if all $c_{i}=0$. Thus

$$
0 \neq\left|\begin{array}{ccc}
1 & 0 & \sqrt{2} x \tag{*}\\
0 & 1 & \sqrt{2} y \\
1 & 1 & \sqrt{2} z
\end{array}\right|=\sqrt{2}(z-x-y), \quad \Rightarrow \quad z \neq x+y
$$

Clearly, there are many "nice" solutions to this inequality, e.g.:

$$
\left[\begin{array}{l}
1 \\
0 \\
0
\end{array}\right], \quad\left[\begin{array}{l}
0 \\
1 \\
0
\end{array}\right], \quad\left[\begin{array}{l}
0 \\
0 \\
1
\end{array}\right], \quad \frac{1}{\sqrt{2}}\left[\begin{array}{l}
1 \\
1 \\
0
\end{array}\right], \quad \frac{1}{\sqrt{3}}\left[\begin{array}{l}
1 \\
1 \\
1
\end{array}\right], \quad \text { etc. }
$$

For reasons of symmetry, we'll pick the fourth choice here.
b. Construct the $\left\langle u_{i}\right|, i=1,2,3$ and show that this basis it not orthonormal.

Solution

For the $\left\langle u_{i}\right|$ to act on the column-vectors $\left|u_{i}\right\rangle$ and to produce (in general, complex) numbers, they must be hermitian-conjugate row-vectors:

$$
\left\langle u_{1}\right|=\frac{1}{\sqrt{2}}[1,0,1], \quad\left\langle u_{1}\right|=\frac{1}{\sqrt{2}}[0,1,1], \quad\left\langle u_{1}\right|=\frac{1}{\sqrt{2}}[1,1,0] .
$$

Non-orthogonality is proven by finding $\left\langle u_{i} \mid u_{j}\right\rangle \neq 0$ for any $i \neq j$; in this case, this is true for all three pairs:

$$
\left\langle u_{i} \mid u_{j}\right\rangle=\frac{1}{2}\left(1+\delta_{i, j}\right), \quad i, j=1,2,3 .
$$

Since $\left\langle u_{i} \mid u_{j}\right\rangle \neq 0$ when $i \neq j$, this basis, albeit complete and 'nicely' symmetric (which may be the reason for using it in some particular application), is not orthogonal.
c. Starting with $\left|v_{1}\right\rangle=\left|u_{1}\right\rangle$, and $\left|v_{2}\right\rangle=b_{1}\left|u_{1}\right\rangle+b_{2}\left|u_{2}\right\rangle$, construct an orthonormal basis $\left\{\left|v_{i}\right\rangle, i=1,2,3\right\}$.
Solution
We start with the $\left|v_{i}\right\rangle, i=1,2$ as instructed, require orthogonality:

$$
0 \stackrel{!}{=}\left\langle v_{1} \mid v_{2}\right\rangle=\left\langle u_{1}\right|\left(b_{1}\left|u_{1}\right\rangle+b_{2}\left|u_{2}\right\rangle\right)=b_{1}+\frac{1}{2} b_{2}, \quad \Rightarrow \quad\left|v_{1}\right\rangle=\frac{b_{1}}{\sqrt{2}}\left[\begin{array}{r}
1 \\
-2 \\
-1
\end{array}\right],
$$

and then normalize:

$$
1 \stackrel{!}{=}\left\langle v_{2} \mid v_{2}\right\rangle=\frac{\left|b_{1}\right|^{2}}{2}[1,-2,-1]\left[\begin{array}{r}
1 \\
-2 \\
-1
\end{array}\right]=\left|b_{1}\right|^{2} \cdot 3, \quad \Rightarrow \quad\left|v_{2}\right\rangle=\frac{1}{\sqrt{6}}\left[\begin{array}{r}
1 \\
-2 \\
-1
\end{array}\right] .
$$

Then, we introduce

$$
\left|v_{3}\right\rangle=\left[\begin{array}{l}
x \\
y \\
z
\end{array}\right], \quad \text { such that } \quad\left\langle v_{i} \mid v_{3}\right\rangle=\delta_{i, 3}, \quad i=1,2,3
$$

These three conditions, listed in turn, uniquely fix x, y, z :

$$
\left.\begin{array}{r}
x+z=0 \\
x-2 y-z=0 \\
x^{2}+y^{2}+z^{2}=1
\end{array}\right\} \Rightarrow\left|v_{1}\right\rangle=\frac{1}{\sqrt{3}}\left[\begin{array}{r}
1 \\
1 \\
-1
\end{array}\right] .
$$

d. Construct the projection operators $\hat{\mathrm{P}}_{i}=\left|v_{i}\right\rangle\left\langle v_{i}\right|$ and prove that $\sum_{i=1}^{3} \hat{\mathrm{P}}_{i}=\mathbb{1}$, and that $\hat{\mathrm{P}}_{i} \hat{\mathrm{P}}_{j}=\delta_{i j} \hat{\mathrm{P}}_{j}, \forall i, j=1,2,3$. (Neither of these holds for $\hat{\boldsymbol{\Pi}}_{i}=\left|u_{i}\right\rangle\left\langle u_{i}\right|$.)

Straightforwardly:

$$
\hat{\mathrm{P}}_{1}=\left|v_{1}\right\rangle\left\langle v_{1}\right|=\frac{1}{2}\left[\begin{array}{l}
1 \\
0 \\
1
\end{array}\right][1,0,1]=\left[\begin{array}{ccc}
1 / 2 & 0 & 1 / 2 \\
0 & 0 & 0 \\
1 / 2 & 0 & 1 / 2
\end{array}\right],
$$

and

$$
\hat{\mathrm{P}}_{2}=\left[\begin{array}{rrr}
1 / 6 & -1 / 3 & -1 / 6 \\
-1 / 3 & 2 / 3 & 1 / 3 \\
-1 / 6 & 1 / 3 & 1 / 6
\end{array}\right], \quad \hat{\mathrm{P}}_{3}=\left[\begin{array}{rrr}
1 / 3 & 1 / 3 & -1 / 3 \\
1 / 3 & 1 / 3 & -1 / 3 \\
-1 / 3 & -1 / 3 & 1 / 3
\end{array}\right] .
$$

And, with these, indeed:

$$
\left[\begin{array}{ccc}
1 / 2 & 0 & 1 / 2 \\
0 & 0 & 0 \\
1 / 2 & 0 & 1 / 2
\end{array}\right]+\left[\begin{array}{ccc}
1 / 6 & -1 / 3 & -1 / 6 \\
-1 / 3 & 2 / 3 & 1 / 3 \\
-1 / 6 & 1 / 3 & 1 / 6
\end{array}\right]+\left[\begin{array}{ccc}
1 / 6 & -1 / 3 & -1 / 6 \\
-1 / 3 & 2 / 3 & 1 / 3 \\
-1 / 6 & 1 / 3 & 1 / 6
\end{array}\right]=\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right],
$$

and, similarly, $\hat{\mathrm{P}}_{i} \hat{\mathrm{P}}_{i}=\hat{\mathrm{P}}_{i}$ for $i=1,2,3$ but $\hat{\mathrm{P}}_{i} \hat{\mathrm{P}}_{j}=0$ if $i \neq j$. These matrix calculations are clearly lengthy and were best left for the take-home part.
2. An observable of the system in problem 1 is represented by $\hat{F}=\left[\begin{array}{rrr}0 & 1 & 0 \\ 1 & -1 & 1 \\ 0 & 1 & 0\end{array}\right]$.
a. Determine all possible results of (single attempts of) measuring \hat{F}.

Solution
Possible outcomes of single measurements are the eigenvalues of \hat{F}. These we obtain by solving the secular equation:

$$
0 \stackrel{!}{=} \operatorname{det}[\hat{F}-f \mathbb{1}]=\left|\begin{array}{rcc}
-f & 1 & 0 \\
1 & -(f+1) & 1 \\
0 & 1 & -f
\end{array}\right|=-f^{2}(f+1)+2 f=-f(f+2)(f-1),
$$

so the possible single measurement results are $f=-2,0,1$.
b. Determine all eigenvectors of \hat{F}.

Solution

Writing $\hat{F}|f\rangle=f|f\rangle$ as $[\hat{F}-f \mathbb{1}]|f\rangle=0$, we calculate

$$
\begin{aligned}
& \left.0 \stackrel{!}{=}[\hat{F}+2 \mathbb{1}]|-2\rangle=\left[\begin{array}{lll}
2 & 1 & 0 \\
1 & 1 & 1 \\
0 & 1 & 2
\end{array}\right]\left[\begin{array}{l}
x \\
y \\
z
\end{array}\right], \Rightarrow \begin{array}{r}
2 x+y=0 \\
x+y+z=0 \\
y+2 z=0
\end{array}\right\} \Rightarrow|-2\rangle=\frac{1}{\sqrt{6}}\left[\begin{array}{r}
1 \\
-2 \\
1
\end{array}\right] . \\
& \left.0 \stackrel{!}{=}[\hat{F}-0 \mathbb{1}]|0\rangle=\left[\begin{array}{rrr}
0 & 1 & 0 \\
1 & -1 & 1 \\
0 & 1 & 0
\end{array}\right]\left[\begin{array}{l}
x \\
y \\
z
\end{array}\right], \quad \Rightarrow \begin{array}{r}
y=0 \\
x-y+z=0 \\
y=0
\end{array}\right\} \Rightarrow|0\rangle=\frac{1}{\sqrt{2}}\left[\begin{array}{r}
1 \\
0 \\
-1
\end{array}\right] . \\
& \left.0 \stackrel{!}{=}[\hat{F}-1 \mathbb{1}]|1\rangle=\left[\begin{array}{rrr}
-1 & 1 & 0 \\
1 & -2 & 1 \\
0 & 1 & -1
\end{array}\right]\left[\begin{array}{l}
x \\
y \\
z
\end{array}\right], \Rightarrow \begin{array}{r}
-x+y=0 \\
x-2 y+z=0 \\
y-z=0
\end{array}\right\} \Rightarrow|1\rangle=\frac{1}{\sqrt{3}}\left[\begin{array}{l}
1 \\
1 \\
1
\end{array}\right] .
\end{aligned}
$$

c. Calculate the expectation value of \hat{F} in the pure state u_{1}.

Solution
This probability equals $\operatorname{Tr}\left[\hat{\rho}_{u_{1}} \hat{F}\right]=\left\langle u_{1}\right| \hat{F}\left|u_{1}\right\rangle$, and we can calculate it directly:

$$
\langle\hat{F}\rangle_{u_{1}}=\operatorname{Tr}\left[\left[\begin{array}{ccc}
1 / 2 & 0 & 1 / 2 \\
0 & 0 & 0 \\
1 / 2 & 0 & 1 / 2
\end{array}\right] \cdot\left[\begin{array}{rrr}
0 & 1 & 0 \\
1 & -1 & 1 \\
0 & 1 & 0
\end{array}\right]\right]=\operatorname{Tr}\left[\begin{array}{lll}
0 & 1 & 0 \\
0 & 0 & 0 \\
0 & 1 & 0
\end{array}\right]=0
$$

or

$$
\langle\hat{F}\rangle_{u_{1}}=\frac{1}{2}[1,0,1]\left[\begin{array}{rrr}
0 & 1 & 0 \\
1 & -1 & 1 \\
0 & 1 & 0
\end{array}\right]\left[\begin{array}{l}
1 \\
0 \\
1
\end{array}\right]=\frac{1}{2}[1,0,1]\left[\begin{array}{l}
0 \\
2 \\
0
\end{array}\right]=0
$$

d. Calculate the probability that the measurement of the observable \hat{F} in the system in state pure state u_{1} would turn out to be 1 .
Solution
As given in the text, and used in the homework solution, $\operatorname{Prob}(\hat{F}=f \mid \hat{\rho})=\operatorname{Tr}\left[\hat{\rho} \hat{\mathrm{P}}_{f}\right]$. Since $\hat{\mathrm{P}}_{f} \stackrel{\text { def }}{=}|f\rangle\langle f|$, and for the pure state $\hat{\rho}_{u_{1}}=\left|u_{1}\right\rangle\left\langle u_{1}\right|$, we have that

$$
\operatorname{Prob}(\hat{F}=f \mid \hat{\rho})=\operatorname{Tr}[\hat{\rho}|f\rangle\langle f|]=\langle f| \hat{\rho}|f\rangle, \quad=\operatorname{Tr}\left[\left|u_{1}\right\rangle\left\langle u_{1}\right| \hat{\mathrm{P}}_{f}\right]=\left\langle u_{1}\right| \hat{\mathrm{P}}_{f}\left|u_{1}\right\rangle
$$

that is,

$$
\operatorname{Prob}(\hat{F}=f \mid \hat{\rho})=\operatorname{Tr}\left[\left|u_{1}\right\rangle\left\langle u_{1}\right||f\rangle\langle f|\right]=\left\langle f \mid u_{1}\right\rangle\left\langle u_{1} \mid f\right\rangle=\left|\left\langle u_{1} \mid f\right\rangle\right|^{2} .
$$

Alternatively (as done in other texts focusing on the wave-functions), we expand $\left|u_{1}\right\rangle=$ $c_{-2}|-2\rangle+c_{0}|0\rangle+c_{1}|1\rangle$, use the orthonormalization of the $|f\rangle$ to obtain that $\left\langle 1 \mid u_{1}\right\rangle=c_{1}$ is the probability amplitude, and deduce that $\operatorname{Prob}(\hat{F}=f \mid \hat{\rho})=\left|c_{f}\right|^{2}=\left|\left\langle f \mid u_{1}\right\rangle\right|^{2}$, in agreement with the above, more direct calculation.

For our case at hand,

$$
\operatorname{Prob}\left(\hat{F}=1 \mid \hat{\rho}_{u_{1}}\right)=\left|\left\langle u_{1} \mid 1\right\rangle\right|^{2}=\left|\frac{1}{\sqrt{2}}[1,0,1] \frac{1}{\sqrt{3}}\left[\begin{array}{l}
1 \\
1 \\
1
\end{array}\right]\right|^{2}=\frac{1}{6}|2|^{2}=\frac{2}{3} .
$$

e. Calculate the expectation value of \hat{F} in the impure state with $\hat{\rho}=\frac{1}{4} \hat{\mathrm{P}}_{1}+\frac{3}{4} \hat{\mathrm{P}}_{2}$.

Solution
Doing the straightforward matrix algebra:

$$
\hat{\rho}=\frac{1}{4} \hat{\mathrm{P}}_{1}+\frac{3}{4} \hat{\mathrm{P}}_{2}=\frac{1}{4}\left[\begin{array}{ccc}
1 / 2 & 0 & 1 / 2 \\
0 & 0 & 0 \\
1 / 2 & 0 & 1 / 2
\end{array}\right]+\frac{3}{4}\left[\begin{array}{ccc}
1 / 6 & -1 / 3 & -1 / 6 \\
-1 / 3 & 2 / 3 & 1 / 3 \\
-1 / 6 & 1 / 3 & 1 / 6
\end{array}\right]=\left[\begin{array}{ccc}
1 / 4 & -1 / 4 & 0 \\
-1 / 4 & 1 / 2 & 1 / 4 \\
0 & 1 / 4 & 1 / 4
\end{array}\right],
$$

we have that

$$
\langle\hat{F}\rangle_{\rho}=\operatorname{Tr}\left[\left[\begin{array}{ccc}
1 / 4 & -1 / 4 & 0 \\
-1 / 4 & 1 / 2 & 1 / 4 \\
0 & 1 / 4 & 1 / 4
\end{array}\right]\left[\begin{array}{rrr}
0 & 1 & 0 \\
1 & -1 & 1 \\
0 & 1 & 0
\end{array}\right]\right]=\operatorname{Tr}\left[\begin{array}{rcc}
-1 / 4 & 1 / 2 & -1 / 4 \\
1 / 2 & -1 / 2 & 1 / 2 \\
1 / 4 & 0 & 1 / 4
\end{array}\right]=-\frac{1}{2} .
$$

Alternatively, using the linearity of $\operatorname{Tr}[]$, we have that

$$
\begin{aligned}
\langle\hat{F}\rangle_{\rho} & =\operatorname{Tr}\left[\left(\frac{1}{4} \hat{\mathrm{P}}_{1}+\frac{3}{4} \hat{\mathrm{P}}_{2}\right) \hat{F}\right]=\frac{1}{4} \operatorname{Tr}\left[\hat{\mathrm{P}}_{1} \hat{F}\right]+\frac{3}{4} \operatorname{Tr}\left[\hat{\mathrm{P}}_{2} \hat{F}\right], \\
& =\frac{1}{4}\left\langle v_{1}\right| \hat{F}\left|v_{1}\right\rangle+\frac{3}{4}\left\langle v_{2}\right| \hat{F}\left|v_{2}\right\rangle=\frac{1}{4}(0)+\frac{3}{4}\left(-\frac{2}{3}\right)=-\frac{1}{2} .
\end{aligned}
$$

f. Calculate the probability that the measurement of the observable \hat{F} in the system in impure state with $\hat{\rho}=\frac{1}{4} \hat{\mathrm{P}}_{1}+\frac{3}{4} \hat{\mathrm{P}}_{2}$ would turn out to be 1 .
Solution
We have that $\operatorname{Prob}(\hat{F}=f \mid \hat{\rho})=\langle f| \hat{\rho}|f\rangle$ is:

$$
\operatorname{Prob}(\hat{F}=1 \mid \hat{\rho})=\frac{1}{3}[1,1,1]\left[\begin{array}{ccc}
1 / 4 & -1 / 4 & 0 \\
-1 / 4 & 1 / 2 & 1 / 4 \\
0 & 1 / 4 & 1 / 4
\end{array}\right]\left[\begin{array}{l}
1 \\
1 \\
1
\end{array}\right]=\frac{1}{3} .
$$

We could have also calculated this using the linearity of $\operatorname{Tr}[]$:

$$
\begin{aligned}
\operatorname{Prob}(\hat{F}=f \mid \hat{\rho}) & =\operatorname{Tr}\left[\left(\frac{1}{4} \hat{\mathrm{P}}_{1}+\frac{3}{4} \hat{\mathrm{P}}_{2}\right) \hat{\mathrm{P}}_{f}\right]=\frac{1}{4} \operatorname{Tr}\left[\hat{\mathrm{P}}_{1} \hat{\mathrm{P}}_{f}\right]+\frac{3}{4} \operatorname{Tr}\left[\hat{\mathrm{P}}_{2} \hat{\mathrm{P}}_{f}\right], \\
& =\frac{1}{4}\left|\left\langle v_{1} \mid f\right\rangle\right|^{2}+\frac{3}{4}\left|\left\langle v_{2} \mid f\right\rangle\right|^{2}
\end{aligned}
$$

Thus, $\operatorname{Prob}(\hat{F}=1 \mid \hat{\rho})=\frac{1}{4}\left|\left\langle v_{1} \mid 1\right\rangle\right|^{2}+\frac{3}{4}\left|\left\langle v_{2} \mid 1\right\rangle\right|^{2}=\frac{1}{4}\left|\frac{1}{\sqrt{2 \cdot 3}}(2)\right|^{2}+\frac{3}{4}\left|\frac{1}{\sqrt{6 \cdot 3}}(-2)\right|^{2}=\frac{1}{3}$.
3. Consider a particle under the influence of the potential: $W(x)=+\infty$ for $x<0$, $W(x)=0$ for $0<x<a$, and $W(x)=W_{0}$ for $a<x$, with $W_{0}, a>0$.
a. Sketch potential and determine the energy spectrum: which values are discrete and which are continuous.
Solution

$$
[=3 \mathrm{pt}]
$$

b. State/specify all boundary conditions for stationary states with $0<E<W_{0}$. Solution \qquad ـ.

Besides the mathcing condition at $x=a$:

$$
\lim _{\epsilon \rightarrow 0} \psi(a-\epsilon)=\lim _{\epsilon \rightarrow 0} \psi(a+\epsilon), \quad \text { and } \quad \lim _{\epsilon \rightarrow 0} \psi^{\prime}(a-\epsilon)=\lim _{\epsilon \rightarrow 0} \psi^{\prime}(a+\epsilon)
$$

we also have that $\psi(0)=0$ and $\lim _{x \rightarrow \infty} \psi(x)=0$.
c. Find the equation that determines E when $0<E<W_{0}$.

Solution

Since $\psi(0)=0$ and $E>W(x)$ in the first region $(0<x<a)$, here we write $\psi_{(1)}(x)=A \sin (k x)$, where $k=\sqrt{2 M E} / \hbar$. In the second region, we use the requirement that $\lim _{x \rightarrow \infty} \psi(x)=0$ and that now $E<W(x)$, so that we write $\psi_{(2)}(x)=C e^{-\kappa x}$, where $\kappa=\sqrt{2 M\left(W_{0}-E\right)} / \hbar$. The matching conditions then become

$$
A \sin (k a)=C e^{-\kappa a}, \quad \text { and } \quad k A \cos (k a)=-\kappa C e^{-\kappa a}
$$

Dividing the second with the first, we obtain

$$
k \cot (k a)=-\kappa, \quad \text { i.e. } \quad \tan \left(\frac{a}{\hbar} \sqrt{2 M E}\right)=-\sqrt{\frac{E}{W_{0}-E}},
$$

which is the transcendental equation determining E.
d. Sketch the potential and a wave-function when $W_{0} \rightarrow \infty$;

Solution

e. Find the allowed values of E when $W_{0} \rightarrow \infty$.

Solution
The allowed values can be obtained from the result of part c., by letting $W_{0} \rightarrow \infty$. Then we have

$$
\tan \left(\frac{a}{\hbar} \sqrt{2 M E}\right)=0, \quad \text { i.e. } \quad \sin \left(\frac{a}{\hbar} \sqrt{2 M E}\right)=0
$$

which happens for the select values of energy, E_{n} :

$$
\frac{a}{\hbar} \sqrt{2 M E_{n}}=n \pi, \quad \text { so } \quad E_{n}=\frac{\hbar^{2} \pi^{2} n^{2}}{2 M a^{2}}
$$

which agrees with the result obtained in class, using that for the infinite potential well, as we have it here, with boundary conditions: $\psi(0)=0=\psi(a)$.

