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1st Midterm Exam Solutions T.Hübsch

DISCLAIMER: This solution set presents more detail than was required of the Student, and is
meant as an additional resource for learning. Please do study not just the solutions as presented,
but try also to understand the rationale behind the approach.

1. Given two state vectors, |u1〉 = 1√
2

[

1
0
1

]

, and |u2〉 = 1√
2

[

0
1
1

]

,

a. determine a linearly independent |u3〉 and prove that {|ui〉 , i = 1, 2, 3} form a complete

and normalized (albeit not orthonormal) basis for 3-dimensional vectors.
Solution .

For linear independence, we need to find (x, y, z) such that
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would hold only if all ci = 0. Thus

0
!

6=

∣

∣

∣

∣

∣

∣

1 0
√

2x
0 1

√
2 y

1 1
√

2 z

∣

∣

∣

∣

∣

∣

=
√

2(z − x− y) , ⇒ z 6= x+ y . (∗)

Clearly, there are many “nice” solutions to this inequality, e.g.:

[

1
0
0

]

,

[

0
1
0

]

,

[

0
0
1

]

, 1√
2

[

1
1
0

]

, 1√
3

[

1
1
1

]

, etc.

For reasons of symmetry, we’ll pick the fourth choice here. [=5pt]

b. Construct the 〈ui|, i = 1, 2, 3 and show that this basis it not orthonormal.
Solution .

For the 〈ui| to act on the column-vectors |ui〉 and to produce (in general, complex)

numbers, they must be hermitian-conjugate row-vectors:

〈u1| = 1√
2
[1, 0, 1] , 〈u1| = 1√

2
[0, 1, 1] , 〈u1| = 1√

2
[1, 1, 0] .

Non-orthogonality is proven by finding 〈ui|uj〉 6= 0 for any i 6= j; in this case, this is true

for all three pairs:

〈ui|uj〉 = 1
2 (1 + δi,j) , i, j = 1, 2, 3 .

Since 〈ui|uj〉 6= 0 when i 6= j, this basis, albeit complete and ‘nicely’ symmetric (which

may be the reason for using it in some particular application), is not orthogonal. [=5pt]
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c. Starting with |v1〉 = |u1〉, and |v2〉 = b1 |u1〉+ b2 |u2〉, construct an orthonormal basis

{|vi〉 , i = 1, 2, 3}.
Solution .

We start with the |vi〉, i = 1, 2 as instructed, require orthogonality:

0
!
= 〈v1|v2〉 = 〈u1|

(

b1 |u1〉+ b2 |u2〉
)

= b1 + 1
2
b2 , ⇒ |v1〉 =

b1√
2

[

1
−2
−1

]

,

and then normalize:

1
!
= 〈v2|v2〉 =

|b1|2
2

[1,−2,−1]

[

1
−2
−1

]

= |b1|2·3, ⇒ |v2〉 =
1√
6

[

1
−2
−1

]

.

Then, we introduce

|v3〉 =

[

x
y
z

]

, such that 〈vi|v3〉 = δi,3 , i = 1, 2, 3 .

These three conditions, listed in turn, uniquely fix x, y, z: [=10pt]

x+ z= 0
x− 2y − z= 0

x2 + y2 + z2 = 1

}

⇒ |v1〉 =
1√
3

[

1
1

−1

]

.

d. Construct the projection operators P̂i = |vi〉 〈vi| and prove that
∑3

i=1 P̂i = 1l, and that

P̂iP̂j = δij P̂j , ∀ i, j = 1, 2, 3. (Neither of these holds for ¶̂i = |ui〉 〈ui|.)
Solution .

Straightforwardly:

P̂1 = |v1〉 〈v1| = 1
2

[

1
0
1

]

[1, 0, 1] =





1/2 0 1/2

0 0 0
1/2 0 1/2



 ,

and

P̂2 =





1/6 −1/3 −1/6

−1/3
2/3

1/3

−1/6
1/3

1/6



 , P̂3 =





1/3
1/3 −1/3

1/3
1/3 −1/3

−1/3 −1/3
1/3



 .

And, with these, indeed:





1/2 0 1/2

0 0 0
1/2 0 1/2



 +





1/6 −1/3 −1/6

−1/3
2/3

1/3

−1/6
1/3

1/6



 +





1/6 −1/3 −1/6

−1/3
2/3

1/3

−1/6
1/3

1/6



 =





1 0 0
0 1 0
0 0 1



 ,

and, similarly, P̂iP̂i = P̂i for i = 1, 2, 3 but P̂iP̂j = 0 if i 6= j. These matrix calculations are

clearly lengthy and were best left for the take-home part. [=15pt]
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2. An observable of the system in problem 1 is represented by F̂ =

[

0 1 0

1 −1 1

0 1 0

]

.

a. Determine all possible results of (single attempts of) measuring F̂ .
Solution .

Possible outcomes of single measurements are the eigenvalues of F̂ . These we obtain

by solving the secular equation:

0
!
= det[F̂ − f1l] =

∣

∣

∣

∣

∣

∣

−f 1 0
1 −(f+1) 1
0 1 −f

∣

∣

∣

∣

∣

∣

= −f2(f + 1) + 2f = −f(f+2)(f−1) ,

so the possible single measurement results are f = −2, 0, 1. [=5pt]

b. Determine all eigenvectors of F̂ .
Solution .

Writing F̂ |f〉 = f |f〉 as [F̂ − f1l] |f〉 = 0, we calculate

0
!
= [F̂ + 21l] |−2〉 =





2 1 0
1 1 1
0 1 2









x
y
z



 , ⇒
2x+y= 0

x+y+z= 0
y+2z= 0

}

⇒ |−2〉 =
1√
6





1
−2

1



 .

0
!
= [F̂ − 01l] |0〉 =





0 1 0
1 −1 1
0 1 0









x
y
z



 , ⇒
y= 0

x−y+z= 0
y= 0

}

⇒ |0〉 =
1√
2





1
0

−1



 .

0
!
= [F̂ − 11l] |1〉 =





−1 1 0
1 −2 1
0 1 −1









x
y
z



 , ⇒
−x+y= 0

x−2y+z= 0
y−z= 0

}

⇒ |1〉 =
1√
3





1
1
1



 .

[=10pt]

c. Calculate the expectation value of F̂ in the pure state u1.
Solution .

This probability equals Tr[ρ̂u1
F̂ ] = 〈u1|F̂ |u1〉, and we can calculate it directly:

〈F̂ 〉u1
= Tr









1/2 0 1/2

0 0 0
1/2 0 1/2



 ·





0 1 0
1 −1 1
0 1 0







 = Tr





0 1 0
0 0 0
0 1 0



 = 0 ,

or [=5pt]

〈F̂ 〉u1
= 1

2 [1, 0, 1]





0 1 0
1 −1 1
0 1 0









1
0
1



 = 1
2 [1, 0, 1]





0
2
0



 = 0 ,
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d. Calculate the probability that the measurement of the observable F̂ in the system in

state pure state u1 would turn out to be 1.
Solution .

As given in the text, and used in the homework solution, Prob(F̂=f |ρ̂) = Tr[ρ̂ P̂f ].

Since P̂f
def
= |f〉 〈f |, and for the pure state ρ̂u1

= |u1〉 〈u1|, we have that

Prob(F̂=f |ρ̂) = Tr
[

ρ̂ |f〉 〈f |
]

= 〈f |ρ̂|f〉 , = Tr
[

|u1〉 〈u1| P̂f
]

= 〈u1|P̂f |u1〉

that is,

Prob(F̂=f |ρ̂) = Tr
[

|u1〉 〈u1| |f〉 〈f |
]

= 〈f |u1〉〈u1|f〉 =
∣

∣〈u1|f〉
∣

∣

2
.

Alternatively (as done in other texts focusing on the wave-functions), we expand |u1〉 =

c−2 |−2〉+ c0 |0〉+ c1 |1〉, use the orthonormalization of the |f〉 to obtain that 〈1|u1〉 = c1 is

the probability amplitude, and deduce that Prob(F̂=f |ρ̂) = |cf |2 =
∣

∣〈f |u1〉
∣

∣

2
, in agreement

with the above, more direct calculation.

For our case at hand, [=10pt]

Prob(F̂=1|ρ̂u1
) =

∣

∣〈u1|1〉
∣

∣

2
=

∣

∣

∣

∣

∣

1√
2
[1, 0, 1] 1√

3

[

1

1

1

]
∣

∣

∣

∣

∣

2

= 1
6 |2|

2
=

2

3
.

e. Calculate the expectation value of F̂ in the impure state with ρ̂ = 1
4 P̂1 + 3

4 P̂2.
Solution .

Doing the straightforward matrix algebra:

ρ̂ = 1
4 P̂1 + 3

4 P̂2 = 1
4





1/2 0 1/2

0 0 0
1/2 0 1/2



 + 3
4





1/6 −1/3 −1/6

−1/3
2/3

1/3

−1/6
1/3

1/6



 =





1/4 −1/4 0
−1/4

1/2
1/4

0 1/4
1/4



 ,

we have that

〈F̂ 〉ρ = Tr









1/4 −1/4 0
−1/4

1/2
1/4

0 1/4
1/4









0 1 0
1 −1 1
0 1 0







 = Tr





−1/4
1/2 −1/4

1/2 −1/2
1/2

1/4 0 1/4



 = −1

2
.

Alternatively, using the linearity of Tr[ ], we have that

〈F̂ 〉ρ = Tr[( 1
4 P̂1 + 3

4 P̂2)F̂ ] = 1
4 Tr[P̂1F̂ ] + 3

4 Tr[P̂2F̂ ] ,

= 1
4〈v1|F̂ |v1〉+ 3

4〈v2|F̂ |v2〉 = 1
4 (0) + 3

4(− 2
3) = − 1

2 .

[=10pt]
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f. Calculate the probability that the measurement of the observable F̂ in the system in

impure state with ρ̂ = 1
4 P̂1 + 3

4 P̂2 would turn out to be 1.
Solution .

We have that Prob(F̂=f |ρ̂) = 〈f |ρ̂|f〉 is:

Prob(F̂=1|ρ̂) = 1
3 [1, 1, 1]





1/4 −1/4 0
−1/4

1/2
1/4

0 1/4
1/4









1
1
1



 =
1

3
.

We could have also calculated this using the linearity of Tr[ ]:

Prob(F̂=f |ρ̂) = Tr[( 1
4 P̂1 + 3

4 P̂2)P̂f ] = 1
4 Tr[P̂1P̂f ] + 3

4 Tr[P̂2P̂f ] ,

= 1
4

∣

∣〈v1|f〉
∣

∣

2
+ 3

4

∣

∣〈v2|f〉
∣

∣

2
.

Thus, Prob(F̂=1|ρ̂) = 1
4

∣

∣〈v1|1〉
∣

∣

2
+ 3

4

∣

∣〈v2|1〉
∣

∣

2
= 1

4

∣

∣

1√
2·3

(2)
∣

∣

2
+ 3

4

∣

∣

1√
6·3

(−2)
∣

∣

2
= 1

3 . [=15pt]

3. Consider a particle under the influence of the potential: W (x) = +∞ for x < 0,

W (x) = 0 for 0 < x < a, and W (x) = W0 for a < x, with W0, a > 0.

a. Sketch potential and determine the energy spectrum: which values are discrete and

which are continuous.
Solution .

W (x)

x

W0

0

a

Above W0, energy is continuous.

Between 0 and W0,
energy is discrete.

[=3pt]

b. State/specify all boundary conditions for stationary states with 0 < E < W0.
Solution .

Besides the mathcing condition at x = a:

lim
ε→0

ψ(a− ε) = lim
ε→0

ψ(a+ ε) , and lim
ε→0

ψ′(a− ε) = lim
ε→0

ψ′(a+ ε) ,

we also have that ψ(0) = 0 and limx→∞ ψ(x) = 0. [=5pt]
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c. Find the equation that determines E when 0 < E < W0.
Solution .

Since ψ(0) = 0 and E > W (x) in the first region (0 < x < a), here we write

ψ(1)(x) = A sin(kx), where k =
√

2ME/h̄. In the second region, we use the requirement

that limx→∞ ψ(x) = 0 and that now E < W (x), so that we write ψ(2)(x) = Ce−κx, where

κ =
√

2M(W0 −E)/h̄. The matching conditions then become

A sin(ka) = Ce−κa , and kA cos(ka) = −κCe−κa .

Dividing the second with the first, we obtain

k cot(ka) = −κ , i.e. tan
(a

h̄

√
2ME

)

= −
√

E

W0 −E
,

which is the transcendental equation determining E. [=15pt]

d. Sketch the potential and a wave-function when W0 →∞;
Solution .

W (x)

x

0

a

E4

ψ4(x)

Note that all ψ(x) ≡ 0
for x < 0 and x > a.

[=2pt]

e. Find the allowed values of E when W0 →∞.
Solution .

The allowed values can be obtained from the result of part c., by letting W0 → ∞.

Then we have

tan
(a

h̄

√
2ME

)

= 0 , i.e. sin
(a

h̄

√
2ME

)

= 0 ,

which happens for the select values of energy, En:

a

h̄

√

2MEn = nπ , so En =
h̄2π2n2

2Ma2
,

which agrees with the result obtained in class, using that for the infinite potential well, as

we have it here, with boundary conditions: ψ(0) = 0 = ψ(a). [=5pt]
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