DEPARTMENT OF PHYSICS AND ASTRONOMY
(202)-806-6245 (Main Office)
(202)-806-5830 (FAX)

Quantum Mechanics I

1st Midterm Exam

Instructor: T.Hübsch

2355 Sixth Str., NW, TKH Rm. 215
thubsch@howard.edu
(202)-806-6257
9th Oct. '98. prow all your If you cannot complete one part of a calculation, a clear description of the procedure/method will still earn you partial credit. Budget your time: first do what you are sure you know how; use short-cuts whenever possible (but be prepared to explain them afterwards, if necessary).

1. Consider a particle in an rectangular potential well: $V(x)=+\infty$ for $x<0, V(x)=0$ for $0<x<a$, and $V(x)=+V_{0}$ for $x>0$, where V_{0} and a are positive constants. For $-V_{0}<E<0$:
a. sketch potential and the wave-function, on the same plot, and specify the (boundary) matching conditions for the wave-function;
b. find the condition on E (the bound state energy levels);
c. sketch the potential and the wave-function when $V_{0} \rightarrow \infty$;
d. find the allowed values of E when $V_{0} \rightarrow \infty$.

$$
\begin{equation*}
[=10 \mathrm{pt}] \tag{=5pt}
\end{equation*}
$$

Hint: d. can be obtained both as a (careful!) limit of part b., and also by an independent calculation.
2. Consider a (1-dimensional) particle moving in the potential $V(x)=0$ for $|x|>a$ and $V(x)=\lambda\left(x^{2}-a^{2}\right)$ for $|x|<a$, where $a, \lambda>0$.
a. Determine the wave-function, in the WKB approximation (state all the conditions that determine the constants), for allowed negative energies.
[$=15 \mathrm{pt}]$
b. Determine the WKB estimate of the allowed negative energy levels. [=15pt]
3. Find the asymptotic form of the stationary wave-function, $\psi_{\infty}(x)$ as $x \rightarrow \infty$, for a single particle in the potential $V(x)=\lambda x^{8}$.

Hint: This can be solved both by a WKB estimate, or by approximately solving the Schrödinger equation for very large x (keeping only highest order terms throughout the calculation).
4. Sketch the potential, sketch a sample bound-state wave-function (if any), and write down the energy quantization condition $\left(V_{0}, a>0\right)$ for each of:
a. $V(x)=V_{0} \log |x+1| ; \quad[=10 \mathrm{pt}]$
b. $V(x)=V_{0} /\left(1+x^{2}\right) ; \quad[=10 \mathrm{pt}]$
c. $V(x)=-V_{0} /\left(1+x^{2}\right) . \quad[=10 \mathrm{pt}]$
d. $V(x)=0$ for $x<0$ and $x>2 a$, but $V(x)=V_{0} \sin (x \pi / a) . \quad[=10 \mathrm{pt}]$

