HOWARD UNIVERSITY WASHINGTON, D.C. 20059

DEPARTMENT OF PHYSICS AND ASTRONOMY $\substack{(202)-806-6245\ (Main Office)\\(202)-806-5830\ (FAX)}$

Quantum Mechanics I Final Exam

Instructor: T. Hübsch

(Student name and ID) This is an "open Textbook (Park), open lecture notes" take-home exam, due 12 noon of Wednesday, 2nd Dec. '98. For full credit, show all your work. If you cannot complete one part of a calculation, a clear description of the procedure/method will still earn you partial credit. No collaboration or consultation is allowed, but you may quote (full reference, please) any published source for intermediate results that you may use.

- **1.** Consider the potential: $V(x) = \lambda |x|$ for |x| < a, and $V(x) = a\lambda$, for |x| > a; $a, \lambda > 0$.
 - a. For energies $0 < E < V_{\infty}$, specify all boundary conditions.
 - b. Use WKB approximation to find the energy quantization condition, and for $V_{\infty} = a\lambda$ estimate λ_0 , the smallest value of λ , such that there be at least one bound state. [10pt]
 - c. Assume that λ is slowly changed from $\lambda > \lambda_0$ to $\lambda < \lambda_0$. Describe what happens to the bound state(s). [10pt]
 - d. Describe the Hilbert space of the system when $\lambda > \lambda_0$ and when $\lambda < \lambda_0$. [5pt]
- **2.** For a spherical potential well, with V = 0 for r < R and $V = \infty$ for r > R,
 - a. solve for the wave-functions in spherical coordinates [15pt]
 - b. Calculate the energy spectrum (= list of allowed values). [10pt]
 - c. Specify the degeneracy of the stationary states.
 - d. Shift the potential by adding $\alpha \sin(\theta)$, where $\alpha > 0$ is constant, and calculate the lowest order non-zero perturbative correction to the energy. Is the degeneracy lifted? Fully or only partially? [10pt]

Consider the 2-dimensional harmonic oscillator, $\hat{H} = \hbar \omega [\hat{a}_1^{\dagger} \hat{a}_1 + \hat{a}_2^{\dagger} \hat{a}_2 + 1]$, with its 3. Hilbert space of stationary states $\{ |m, n\rangle, m, n=0, 1... \}$, and the four quadratic operators $\hat{Q}_{ij} \stackrel{\text{def}}{=} \hat{a}_i^{\dagger} \hat{a}_j \ (i, j = 1, 2).$

- a. Determine the action of each of the four \hat{Q}_{ij} on the stationary states $|m, n\rangle$. [10pt]
- b. Prove by explicit computation that all \hat{Q}_{ij} commute with \hat{H} . [10pt]
- c. Prove that all \hat{Q}_{ij} commute with \hat{H} by only using their action on the $|m, n\rangle$. [10pt]

Write $\hat{L}_0 \stackrel{\text{def}}{=} (\hat{Q}_{11} + \hat{Q}_{22}), \ \hat{L}_{\pm} \stackrel{\text{def}}{=} C_{\pm}(\hat{Q}_{12} \pm \beta_{\pm}\hat{Q}_{21}), \ \text{and} \ \hat{L}_3 \stackrel{\text{def}}{=} C_3(\hat{Q}_{11} - \hat{Q}_{22}).$

- d. Specify the constants $C_{\pm}, \beta_{\pm}, C_3$ so that the operators \hat{L}_{\pm}, \hat{L}_3 would satisfy the angular momentum commutation relations. [10pt]
- e. What possibly physical meaning can be given to \hat{L}_0 ?

2355 Sixth Str., NW, TKH Rm.215 thubsch@howard.edu (202)-806-6257

23rd Nov. '98.

[10pt]

[5pt]

[5pt]