HOWARD UNIVERSITY WASHINGTON, DC 20059

DEPARTMENT OF PHYSICS AND ASTRONOMY (202)-806-6245 (MAIN OFFICE) (202)-806-5830 (FAX)

Quantum Mechanics II

Final Exam

Instructor: T. Hübsch

Don't Panic !

2355 SIXTH ST., NW, TKH RM.215 thubsch@howard.edu (202)-806-6257

4th Dec. '02.

(Student name and ID)

This is an "open Textbook (Ballentine), open lecture notes" take-home exam, **due 5** PM **of Wednesday**, **11th Dec. 2002**. For full credit, show all your work. If you cannot complete one part of a calculation, a clear description of the procedure/method will still earn you partial credit. No collaboration or consultation is allowed, but you may quote (full reference, please) *any published source* for *intermediate* results that you may use.

1. Consider a quantum particle of mass M, moving under the influence of the potential $V(x) = \frac{1}{2}M\omega^2(x^2-a^2) + \lambda$ for |x| < a, and V(x) = 0, for |x| > a; $a, \lambda > 0$.

- a. Specify which energies are permissible, and for each energy (band) *all* the corresponding boundary conditions. [=10pt]
- b. Solve the problem exactly^{*}: calculate the exact wave-functions and corresponding energy levels, or at least . [=20pt]
- c. For a fixed value of a, estimate the smallest value of λ (call it λ_0) for which there is least one bound state. [=10pt]
- d. Describe the Hilbert space of the system when $0 < \lambda_0 < \lambda$ and when $0 < \lambda < \lambda_0$. [=10pt]
- e. Assume that λ is slowly changed from $\lambda > \lambda_0 > 0$ to $0 < \lambda < \lambda_0$. Describe what happens to the bound state(s). [=15pt]

* It is convenient to divide the x-space of this problem into three regions, $x \in (-\infty, -a, +a, +\infty)$, so that for $x \in [-a, +a]$ this would reduce to the linear harmonic oscillator. However, note that this x-space domain is *finite*, so the boundary conditions at |x|=a do not rule out the "divergent" solution of LHO.

2. Consider a particle of mass M moving freely within an infinitely deep spherical potential well, with V = 0 for r < R and $V = \infty$ for r > R,

- a. Expand the wave-functions in spherical harminics and determine the radial equation; [=10pt]
- b. Specify the boundary conditions for the differential equation satisfied by the radial factor, and then solve it. [=10pt]
- c. Determine the complete energy spectrum (= list of allowed values). [=15pt]
- d. Calculate the degeneracy of *all* stationary states, or at least those with the *three* lowest energies. [=10pt]
- e. Explain which part of the degeneracy is caused by the spherical symmetry of the potential. [=10pt]

Student name and ID:

f. Shift the potential by adding $\hat{H}' = \alpha \sin(\theta)$, where $0 < \alpha = const.$ may be regarded as small, and calculate the correction to the energy of the next-to-lowest lying state(s). Is the degeneracy of this energy level lifted? Fully or only partially? Explain. [=20pt]

3. Consider the 2-dimensional harmonic oscillator, $\hat{H} = \hbar \omega [\hat{a}^{\dagger}_{1}\hat{a}_{1} + \hat{a}^{\dagger}_{2}\hat{a}_{2} + 1]$, with its Hilbert space of stationary states $\{ |n_{1}, n_{2}\rangle = \frac{1}{n_{1}!n_{2}!}(\hat{a}^{\dagger}_{1})^{n_{1}}(\hat{a}^{\dagger}_{2})^{n_{2}} |0,0\rangle, n_{1}, n_{2}=0, 1... \}$, and the four quadratic operators $\hat{K}_{ij} \stackrel{\text{def}}{=} [(n_{i}+1)n_{j}]^{-1/2}\hat{a}^{\dagger}_{i}\hat{a}_{j} \ (i,j=1,2).$

- a. List the allowed values of energy, and determine their degeneracy (or the lowest 10 levels, if you cannot determine a general formula). [=10pt]
- b. Determine the action of each of the four \hat{K}_{ij} on the stationary states $|n_1, n_2\rangle$. [=10pt]
- c. Prove by explicit computation that all \hat{K}_{ij} commute with \hat{H} . [=15pt]
- d. Prove that all \hat{K}_{ij} commute with \hat{H} by only using their action on the $|n_1, n_2\rangle$. [=15pt]

Write $\hat{L}_0 \stackrel{\text{def}}{=} (\hat{K}_{11} + \hat{K}_{22}), \ \hat{L}_{\pm} \stackrel{\text{def}}{=} C_{\pm}(\hat{K}_{12} \pm \beta_{\pm}\hat{K}_{21}), \ \text{and} \ \hat{L}_3 \stackrel{\text{def}}{=} C_3(\hat{K}_{11} - \hat{K}_{22}).$

- e. Specify the constants C_{\pm} , β_{\pm} , C_3 so that the operators \hat{L}_{\pm} , \hat{L}_3 would satisfy the angular momentum commutation relations. [=20pt]
- f. What possibly physical meaning can be given to \hat{L}_0 ? [=10pt]