# Howard University 

Washington, DC 20059

Department of Physics and Astronomy (202)-806-6245 (Main Office)
(202)-806-5830 (fax)

## Quantum Mechanics II

Final Exam

2355 Sixth St., NW, TKH Rm. 215
thubsch@howard.edu
(202)-806-6257

4th Dec. '02.

Instructor: T. Hübsch
(Student name and ID)
This is an "open Textbook (Ballentine), open lecture notes" take-home exam, due 5 PM of Wednesday, 11th Dec. 2002. For full credit, show all your work. If you cannot complete one part of a calculation, a clear description of the procedure/method will still earn you partial credit. No collaboration or consultation is allowed, but you may quote (full reference, please) any published source for intermediate results that you may use.

1. Consider a quantum particle of mass $M$, moving under the influence of the potential $V(x)=\frac{1}{2} M \omega^{2}\left(x^{2}-a^{2}\right)+\lambda$ for $|x|<a$, and $V(x)=0$, for $|x|>a ; a, \lambda>0$.
a. Specify which energies are permissible, and for each energy (band) all the corresponding boundary conditions.
b. Solve the problem exactly*: calculate the exact wave-functions and corresponding energy levels, or at least .
[ $=20 \mathrm{pt}$ ]
c. For a fixed value of $a$, estimate the smallest value of $\lambda$ (call it $\lambda_{0}$ ) for which there is least one bound state.

$$
[=10 \mathrm{pt}]
$$

d. Describe the Hilbert space of the system when $0<\lambda_{0}<\lambda$ and when $0<\lambda<\lambda_{0}$. [=10pt]
e. Assume that $\lambda$ is slowly changed from $\lambda>\lambda_{0}>0$ to $0<\lambda<\lambda_{0}$. Describe what happens to the bound state(s).

* It is convenient to divide the $x$-space of this problem into three regions, $x \in(-\infty,-a,+a,+\infty)$, so that for $x \in[-a,+a]$ this would reduce to the linear harmonic oscillator. However, note that this $x$-space domain is finite, so the boundary conditions at $|x|=a$ do not rule out the "divergent" solution of LHO.

2. Consider a particle of mass $M$ moving freely within an infinitely deep spherical potential well, with $V=0$ for $r<R$ and $V=\infty$ for $r>R$,
a. Expand the wave-functions in spherical harminics and determine the radial equation; $[=10 \mathrm{pt}]$
b. Specify the boundary conditions for the differential equation satisfied by the radial factor, and then solve it.

$$
[=10 \mathrm{pt}]
$$

c. Determine the complete energy spectrum ( $=$ list of allowed values). [=15pt]
d. Calculate the degeneracy of all stationary states, or at least those with the three lowest energies.

$$
[=10 \mathrm{pt}]
$$

e. Explain which part of the degeneracy is caused by the spherical symmetry of the potential.

$$
[=10 \mathrm{pt}]
$$

$\qquad$
f. Shift the potential by adding $\hat{H}^{\prime}=\alpha \sin (\theta)$, where $0<\alpha=$ const. may be regarded as small, and calculate the correction to the energy of the next-to-lowest lying state(s). Is the degeneracy of this energy level lifted? Fully or only partially? Explain. [=20pt]
3. Consider the 2-dimensional harmonic oscillator, $\hat{H}=\hbar \omega\left[\hat{a}^{\dagger}{ }_{1} \hat{a}_{1}+\hat{a}^{\dagger}{ }_{2} \hat{a}_{2}+1\right]$, with its Hilbert space of stationary states $\left\{\left|n_{1}, n_{2}\right\rangle=\frac{1}{n_{1}!n_{2}!}\left(\hat{a}^{\dagger}{ }_{1}\right)^{n_{1}}\left(\hat{a}^{\dagger}{ }_{2}\right)^{n_{2}}|0,0\rangle, n_{1}, n_{2}=0,1 \ldots\right\}$, and the four quadratic operators $\hat{K}_{i j} \stackrel{\text { def }}{=}\left[\left(n_{i}+1\right) n_{j}\right]^{-1 / 2} \hat{\mathrm{a}}^{\dagger}{ }_{i} \hat{\mathrm{a}}_{j}(i, j=1,2)$.
a. List the allowed values of energy, and determine their degeneracy (or the lowest 10 levels, if you cannot determine a general formula).
b. Determine the action of each of the four $\hat{K}_{i j}$ on the stationary states $\left|n_{1}, n_{2}\right\rangle$. $\quad[=10 \mathrm{pt}]$
c. Prove by explicit computation that all $\hat{K}_{i j}$ commute with $\hat{H}$. [=15pt]
d. Prove that all $\hat{K}_{i j}$ commute with $\hat{H}$ by only using their action on the $\left|n_{1}, n_{2}\right\rangle$. [=15pt]

Write $\hat{L}_{0} \stackrel{\text { def }}{=}\left(\hat{K}_{11}+\hat{K}_{22}\right), \hat{L}_{ \pm} \stackrel{\text { def }}{=} C_{ \pm}\left(\hat{K}_{12} \pm \beta_{ \pm} \hat{K}_{21}\right)$, and $\hat{L}_{3} \stackrel{\text { def }}{=} C_{3}\left(\hat{K}_{11}-\hat{K}_{22}\right)$.
e. Specify the constants $C_{ \pm}, \beta_{ \pm}, C_{3}$ so that the operators $\hat{L}_{ \pm}, \hat{L}_{3}$ would satisfy the angular momentum commutation relations.

$$
[=20 \mathrm{pt}]
$$

f. What possibly physical meaning can be given to $\hat{L}_{0}$ ? [ $=10 \mathrm{pt}$ ]

