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1. Small oscillations

The solutions to the examples considered here are organized in a way that outlines the
general Lagrangian method.

1.1. Two beads between springs

Consider two beads, with masses m1, m2, moving in one dimension and connected by
springs: the left wall to the 1st bead and with spring constant k1, the 1st to the 2nd bead
at k2, and the 2nd bead to the right wall at k3. Find normal modes and their frequencies.

1. There are two beads, the motion of which we need to determine. For each bead,
we’ll need it’s 1-dimensional displacement about the equilibrium position, and hence one
generalized coordinate for each bead: two in all.

2. Now that we have chosen the generalized coordinates, we can write down the kinetic
and potential energies:

a. Kinetic energy is the ability of each bead to do work owing to the energy stored
in its motion. Furthermore, the kinetic energies of each bead add, so we have:

T = T1 + T2 = 1
2
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2
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2
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2
2 .

b. Now, the potential energy is the ability to do work owing to the energy stored in
the stretching or contraction of each spring. And again, these energies add:

V = V1 + V2 + V3 = 1
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Notice here that the amount of stretching or contracting that befalls the 1st (3rd)
spring depends solely on the displacements of the 1st (2nd) bead; however, the amount
of stretching or contracting of the 2nd spring depends on both: it depends on the
relative displacement of the 1st and the 2nd bead, x1−x2!

3. The Lagrangian for the system now reads:

L = 1
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and we are ready to write out the concrete form of the general equations of motion:

d

dt

( ∂L

∂ẋi
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=
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∂xi

,
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for i = 1, 2 (each of the beads). Straightforwardly, we get:

mẍ1 = −k1x1 − k2(x1 − x2) = −(k1 + k2)x1 + k2x2 ,

mẍ2 = −k2(x2 − x1) − k3x2 = −(k2 + k3)x3 + k2x1 ,
(1.1)

We notice that this is a coupled system of linear, homogeneous, ordinary differential equa-
tions of second order: solving either one would require the solution of the other.

4. Recall the fact that for a single bead of mass m, attached to a single spring of constant
k, the displacement oscillates as x(t) = a cos(ωt − δ), where a, δ are the amplitude and
phase, respectively, and ω =

√
k/m is the frequency of oscillation. Now, it should be clear

that there will exist ways for the two beads to oscillate in a coherent way, with the same
frequency and phase. This leads us to look for solutions in the form

xi = ai cos(ωt − δ) , i = 1, 2 ; (1.2)

note that ẍi(t) = −ω2ai cos(ωt−δ) = −ω2xi(t). By inserting this into Eq. (1.1), we obtain:

−m1x1ω
2 = −(k1 + k2)x1 + k2x2 ,

−m2x2ω
2 = −(k2 + k3)x3 + k2x1 .

(1.3)

Since x1, x2 both have the cos(ωt − δ) factor in common, we can cancel them out and
obtain the system of equations

0 = m1a1ω
2 − (k1 + k2)a1 + k2a2 ,

0 = m2a2ω
2 − (k2 + k3)a3 + k2a1 ,

(1.4)

which may be written, in matrix notation, as[
0
0

]
=

[
m1ω2 − (k1+k2) k2

k2 m2ω2 − (k2+k3)

] [
a1

a2

]
. (1.5)

For this homogeneous system of equations to have nontrivial solutions in a1, a2, the deter-
minant of the system must vanish:

0 = det

[
m1ω2 − (k1+k2) k2

k2 m2ω2 − (k2+k3)

]
, (1.6a)

= [m1ω
2 − (k1+k2)][m2ω

2 − (k2+k3)] − k 2
2 ,

= m1m2ω
4 − [m1(k2+k3) + m2(k1+k2)]ω

2 + (k1k2+k2k3+k1k3) . (1.6b)

5. This is a bi-quadratic equation in ω (i.e., it is quadratic in ω). This implies that half
of the solutions will be simply the negative of the other half. Owing to the form of the
solutions (1.2), however, ω and −ω represent the same type of motion, and we expect two
(physically) distinct solutions, with:

ω 2
± =

A+B

2m1m2

±

√
(A+B)2 − 4m1m2C

4m 2
1 m 2

2

, (1.7a)
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where

A = m1(k2+k3) , B = m2(k1+k2) , and C = (k1k2+k2k3+k1k3) . (1.7b)

being the two distinct solutions for ω2.

There are four increasingly more and more special (simpler) cases:

a. When k1 = k3 = k, in which case

ω 2
± =

(m1+m2)(k+k2)

2m1m2

±

√
(m1+m2)2(k+k2)2 − 4m1m2k(k+2k2)

4m 2
1 m 2

2

, (1.8)

b. When m1 = m2 = m, in which case

ω 2
± =

k1+2k2+k3

2m
±

√
k 2
1 +4k 2

2 − 2k1k3+k 2
3

4m2
, (1.9)

c. When k1 = k3 = k and m1 = m2 = m, in which case

ω 2
± =

k+k2

m
±

k2

m
, i.e.,

{
ω 2

+ = k+2k2

m
,

ω 2
− = k

m
.

(1.10)

d. When k1 = k2 = k3 = k and m1 = m2 = m, in which case

ω 2
± =

3k

m
±

k

m
, i.e., ω 2

+ =
3k

m
, and ω 2

− =
k

m
. (1.11)

6. Substitution of one or the other solution, ω 2
+, ω 2

− (1.7), into the matrix equation (1.5),
permits solving for a1, a2. However, as the determinant of the system now vanishes (1.6),
the system (1.5) will be underdetermined, so that we can only solve for one of the two
amplitudes, a1, a2, in terms of the other:

a2± =
a1±

2k2m1

(
A − B ∓

√
(A + B)2 − 4m1m2C

)
. (1.12)

These are the (relative) amplitudes of the displacements of the 1st and 2nd bead, respec-
tively, for the “+” and the “−” normal mode.

The diligent Reader will have no difficulty obtaining the corresponding results for the
four above special cases; in particular, both cases (c.) and (d.) yield a2± = ∓a1±.[1]

7. The normal modes can be used to provide a complete expression for both generalized
coordinates:

q1(t) = a1+ cos(ω+t − δ+) + a1− cos(ω−t − δ−) ,

q2(t) = a2+ cos(ω+t − δ+) + a2− cos(ω−t − δ−) ,
(1.13)

which are clearly given as linear combinations (i.e., superpositions) of (or, expansions over)
the (two in this simple case) normal modes, and this clearly generalizes for n generalized
coordinates and n normal modes. The constants δ± and ai± may be determined from an
initial (final, intermediate. . .) condition, where the instantaneous values of qi(t) and the
phases are specified at some particular time.
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