HowARD UNIVERSITY

Washington, DC 20059

Department of Physics and Astronomy
(202)-806-6245 (Main Office)
(202)-806-5830 (FAx)

Physical Mechanics II
Case Studies

Spring '04.
Handout (T. Hübsch)

1. Small oscillations

The solutions to the examples considered here are organized in a way that outlines the general Lagrangian method.

1.1. Two beads between springs

Consider two beads, with masses m_{1}, m_{2}, moving in one dimension and connected by springs: the left wall to the 1 st bead and with spring constant k_{1}, the 1 st to the 2 nd bead at k_{2}, and the 2 nd bead to the right wall at k_{3}. Find normal modes and their frequencies.

1. There are two beads, the motion of which we need to determine. For each bead, we'll need it's 1-dimensional displacement about the equilibrium position, and hence one generalized coordinate for each bead: two in all.
2. Now that we have chosen the generalized coordinates, we can write down the kinetic and potential energies:
a. Kinetic energy is the ability of each bead to do work owing to the energy stored in its motion. Furthermore, the kinetic energies of each bead add, so we have:

$$
T=T_{1}+T_{2}=\frac{1}{2} m_{1} \dot{x}_{1}^{2}+\frac{1}{2} m_{2} \dot{x}_{2}^{2} .
$$

b. Now, the potential energy is the ability to do work owing to the energy stored in the stretching or contraction of each spring. And again, these energies add:

$$
V=V_{1}+V_{2}+V_{3}=\frac{1}{2} k_{1} x_{1}^{2}+\frac{1}{2} k_{2}\left(x_{1}-x_{2}\right)^{2}+\frac{1}{2} k_{3} x_{2}^{2} .
$$

Notice here that the amount of stretching or contracting that befalls the 1st (3rd) spring depends solely on the displacements of the 1st (2nd) bead; however, the amount of stretching or contracting of the 2nd spring depends on both: it depends on the relative displacement of the 1 st and the 2 nd bead, $x_{1}-x_{2}$!
3. The Lagrangian for the system now reads:

$$
L=\frac{1}{2} m_{1} \dot{x}_{1}^{2}+\frac{1}{2} m_{2} \dot{x}_{2}^{2}-\frac{1}{2} k_{1} x_{1}^{2}-\frac{1}{2} k_{2}\left(x_{1}-x_{2}\right)^{2}-\frac{1}{2} k_{3} x_{2}^{2},
$$

and we are ready to write out the concrete form of the general equations of motion:

$$
\frac{\mathrm{d}}{\mathrm{~d} t}\left(\frac{\partial L}{\partial \dot{x}_{i}}\right)=\frac{\partial L}{\partial x_{i}},
$$

for $i=1,2$ (each of the beads). Straightforwardly, we get:

$$
\begin{align*}
& m \ddot{x}_{1}=-k_{1} x_{1}-k_{2}\left(x_{1}-x_{2}\right)=-\left(k_{1}+k_{2}\right) x_{1}+k_{2} x_{2}, \tag{1.1}\\
& m \ddot{x}_{2}=-k_{2}\left(x_{2}-x_{1}\right)-k_{3} x_{2}=-\left(k_{2}+k_{3}\right) x_{3}+k_{2} x_{1},
\end{align*}
$$

We notice that this is a coupled system of linear, homogeneous, ordinary differential equations of second order: solving either one would require the solution of the other.
4. Recall the fact that for a single bead of mass m, attached to a single spring of constant k, the displacement oscillates as $x(t)=a \cos (\omega t-\delta)$, where a, δ are the amplitude and phase, respectively, and $\omega=\sqrt{k / m}$ is the frequency of oscillation. Now, it should be clear that there will exist ways for the two beads to oscillate in a coherent way, with the same frequency and phase. This leads us to look for solutions in the form

$$
\begin{equation*}
x_{i}=a_{i} \cos (\omega t-\delta), \quad i=1,2 ; \tag{1.2}
\end{equation*}
$$

note that $\ddot{x}_{i}(t)=-\omega^{2} a_{i} \cos (\omega t-\delta)=-\omega^{2} x_{i}(t)$. By inserting this into Eq. (1.1), we obtain:

$$
\begin{align*}
& -m_{1} x_{1} \omega^{2}=-\left(k_{1}+k_{2}\right) x_{1}+k_{2} x_{2}, \\
& -m_{2} x_{2} \omega^{2}=-\left(k_{2}+k_{3}\right) x_{3}+k_{2} x_{1} . \tag{1.3}
\end{align*}
$$

Since x_{1}, x_{2} both have the $\cos (\omega t-\delta)$ factor in common, we can cancel them out and obtain the system of equations

$$
\begin{align*}
& 0=m_{1} a_{1} \omega^{2}-\left(k_{1}+k_{2}\right) a_{1}+k_{2} a_{2} \tag{1.4}\\
& 0=m_{2} a_{2} \omega^{2}-\left(k_{2}+k_{3}\right) a_{3}+k_{2} a_{1}
\end{align*}
$$

which may be written, in matrix notation, as

$$
\left[\begin{array}{l}
0 \tag{1.5}\\
0
\end{array}\right]=\left[\begin{array}{cc}
m_{1} \omega^{2}-\left(k_{1}+k_{2}\right) & k_{2} \\
k_{2} & m_{2} \omega^{2}-\left(k_{2}+k_{3}\right)
\end{array}\right]\left[\begin{array}{l}
a_{1} \\
a_{2}
\end{array}\right] .
$$

For this homogeneous system of equations to have nontrivial solutions in a_{1}, a_{2}, the determinant of the system must vanish:

$$
\begin{align*}
0 & =\operatorname{det}\left[\begin{array}{cc}
m_{1} \omega^{2}-\left(k_{1}+k_{2}\right) & k_{2} \\
k_{2} & m_{2} \omega^{2}-\left(k_{2}+k_{3}\right)
\end{array}\right] \tag{1.6a}\\
& =\left[m_{1} \omega^{2}-\left(k_{1}+k_{2}\right)\right]\left[m_{2} \omega^{2}-\left(k_{2}+k_{3}\right)\right]-k_{2}^{2} \\
& =m_{1} m_{2} \omega^{4}-\left[m_{1}\left(k_{2}+k_{3}\right)+m_{2}\left(k_{1}+k_{2}\right)\right] \omega^{2}+\left(k_{1} k_{2}+k_{2} k_{3}+k_{1} k_{3}\right) \tag{1.6b}
\end{align*}
$$

5. This is a bi-quadratic equation in ω (i.e., it is quadratic in ω). This implies that half of the solutions will be simply the negative of the other half. Owing to the form of the solutions (1.2), however, ω and $-\omega$ represent the same type of motion, and we expect two (physically) distinct solutions, with:

$$
\begin{equation*}
\omega_{ \pm}^{2}=\frac{A+B}{2 m_{1} m_{2}} \pm \sqrt{\frac{(A+B)^{2}-4 m_{1} m_{2} C}{4 m_{1}^{2} m_{2}^{2}}} \tag{1.7a}
\end{equation*}
$$

where

$$
\begin{equation*}
A=m_{1}\left(k_{2}+k_{3}\right), \quad B=m_{2}\left(k_{1}+k_{2}\right), \quad \text { and } \quad C=\left(k_{1} k_{2}+k_{2} k_{3}+k_{1} k_{3}\right) . \tag{1.7b}
\end{equation*}
$$

being the two distinct solutions for ω^{2}.
There are four increasingly more and more special (simpler) cases:
a. When $k_{1}=k_{3}=k$, in which case

$$
\begin{equation*}
\omega_{ \pm}^{2}=\frac{\left(m_{1}+m_{2}\right)\left(k+k_{2}\right)}{2 m_{1} m_{2}} \pm \sqrt{\frac{\left(m_{1}+m_{2}\right)^{2}\left(k+k_{2}\right)^{2}-4 m_{1} m_{2} k\left(k+2 k_{2}\right)}{4 m_{1}^{2} m_{2}^{2}}}, \tag{1.8}
\end{equation*}
$$

b. When $m_{1}=m_{2}=m$, in which case

$$
\begin{equation*}
\omega_{ \pm}^{2}=\frac{k_{1}+2 k_{2}+k_{3}}{2 m} \pm \sqrt{\frac{k_{1}^{2}+4 k_{2}^{2}-2 k_{1} k_{3}+k_{3}^{2}}{4 m^{2}}} \tag{1.9}
\end{equation*}
$$

c. When $k_{1}=k_{3}=k$ and $m_{1}=m_{2}=m$, in which case

$$
\omega_{ \pm}^{2}=\frac{k+k_{2}}{m} \pm \frac{k_{2}}{m}, \quad \text { i.e., } \quad\left\{\begin{array}{l}
\omega_{+}^{2}=\frac{k+2 k_{2}}{m} \tag{1.10}\\
\omega_{-}^{2}=\frac{k}{m}
\end{array}\right.
$$

d. When $k_{1}=k_{2}=k_{3}=k$ and $m_{1}=m_{2}=m$, in which case

$$
\begin{equation*}
\omega_{ \pm}^{2}=\frac{3 k}{m} \pm \frac{k}{m}, \quad \text { i.e., } \quad \omega_{+}^{2}=\frac{3 k}{m}, \quad \text { and } \quad \omega_{-}^{2}=\frac{k}{m} . \tag{1.11}
\end{equation*}
$$

6. Substitution of one or the other solution, $\omega_{+}^{2}, \omega_{-}^{2}$ (1.7), into the matrix equation (1.5), permits solving for a_{1}, a_{2}. However, as the determinant of the system now vanishes (1.6), the system (1.5) will be underdetermined, so that we can only solve for one of the two amplitudes, a_{1}, a_{2}, in terms of the other:

$$
\begin{equation*}
a_{2 \pm}=\frac{a_{1 \pm}}{2 k_{2} m_{1}}\left(A-B \mp \sqrt{(A+B)^{2}-4 m_{1} m_{2} C}\right) . \tag{1.12}
\end{equation*}
$$

These are the (relative) amplitudes of the displacements of the 1st and 2nd bead, respectively, for the "+" and the "-" normal mode.

The diligent Reader will have no difficulty obtaining the corresponding results for the four above special cases; in particular, both cases (c.) and (d.) yield $a_{2 \pm}=\mp a_{1 \pm .[1]}$
7. The normal modes can be used to provide a complete expression for both generalized coordinates:

$$
\begin{align*}
& q_{1}(t)=a_{1+} \cos \left(\omega_{+} t-\delta_{+}\right)+a_{1-} \cos \left(\omega_{-} t-\delta_{-}\right), \\
& q_{2}(t)=a_{2+} \cos \left(\omega_{+} t-\delta_{+}\right)+a_{2-} \cos \left(\omega_{-} t-\delta_{-}\right), \tag{1.13}
\end{align*}
$$

which are clearly given as linear combinations (i.e., superpositions) of (or, expansions over) the (two in this simple case) normal modes, and this clearly generalizes for n generalized coordinates and n normal modes. The constants $\delta_{ \pm}$and $a_{i \pm}$ may be determined from an initial (final, intermediate...) condition, where the instantaneous values of $q_{i}(t)$ and the phases are specified at some particular time.

