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PHYS-013 2nd Midterm Exam Solutions Instructor: T.Hübsch
DISCLAIMER: The completeness and detail presented herein were by no means expected in the
Student’s solutions for full credit. The additional information given here is solely for the Student’s
convenience and education. For each problem, the result is derived in the algebraic form first.
Concrete values are then easy to substitute and compare with the choices offered; this is shown
in the table at the end of each problem.

This time, there was only one group, so all numerical values are the same. Nevertheless, I
first solve the problems algebraically and then substitute the numerical values. In all cases, the
choice of the closest offered value should be straightforward; not one problem asked you to ‘round
up’ or ‘round down’ !

1. A crew pushes a sofa of mass m=200kg up the (tilted) ramp of length L=2.75m (with a
kinetic friction coefficient of µk=0.4) into the moving truck (h=1m off the ground) without
accelerating. Let α be the angle of the ramp; it may be calculated from sinα = h/L and
cos α =

√
L2−h2/L. In fact, we can just use these expressions, without ever evaluating

the numerical value of α.

a. The crew is pushing with a force Fc (along the tilted ramp) that must balance the
other two forces acting on the sofa: the component of the weight along the ramp, FG‖,
and the friction force, Ff . (If the forces along the ramp were not balanced, it would
have to be accelerating—which it isn’t.) Since the sofa is moving upward the ramp,
Ff acts downward the ramp, and we have that Fc = FG‖ + Ff .

Now, notice that the angle between the direction of the weight (vertical) and the
component of the weight perpendicular to the surface of the ramp, FG⊥, is α. Then,
the component of the weight along the ramp, FG‖, equals mg sin θ = mg(h/L). On
the other hand, the friction force is proportional to the normal force, which is equal in
magnitude (and opposite in direction) to the component of the weight perpendicular
to the surface: Ff = µkFG⊥ = µkmg cos α = µkmg

√
L2−h2/L.

Thus, Fc = FG‖ + Ff = mg(h + µk

√
L2 − h2)/L = 1.445kN ≈ 1.5kN. [=20pt]

b. The net work done (against gravity) by placing the sofa into the truck is simply the
(gravitational) potential energy, mgh = 200·9.81·1 = 1.962kN ≈ 2kN. [=5pt]

c. The total work done while moving the sofa may be calculated as the work done by
the force exerted by the crew, Fc, over the length of the ramp, L. Thus: W =(
FG‖ + Ff

)
L = mgh + µkmg

√
L2−h2 = 3.972kN ≈ 4kN.

This final result is easily interpreted: the total work done by the crew on the
sofa is the work against gravity (lifting it into the truck) plus the work done against
friction, moving the sofa (horizontally) over the distance

√
L2−h2 against the friction

force µkmg (since now all of the weight, mg, is perpendicular to the surface).
Since the work does not depend whether it is calculated (1) along the tilted

ramp, and (2) horizontally to the truck and then vertically into it, it is tempting to
conclude that it does not depend on the path taken. This however is not true: just
consider pushing the sofa back and forth along the ramp. While the net (gravitational)
potential energy in the end is the same, much more work will have been done against
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friction. Indeed, it is the dissipative effects such as friction which make work depend
on the path in general.

Finally, while moving the sofa, the crew of course had also to haul their own
weight, but that component of work cannot be estimated, as we do not know the
number and the mass of the crew. [=10pt]

2. A pendulum of length L=2m is released (from rest) at an angle θ0=30◦.
a. The speed of its bob as it swings through the equilibrium position θ = 0◦ is determined

from conservation of energy: K.E. + V = const. Initially, at θ0, the pendulum was
at rest and so had no kinetic energy; the potential energy on the other hand equals
V (θ0) = mg(L−L cos θ0), where the quantity in the parentheses is the height measured
upward, from the height of the lowest possible position (when θ = 0). When passing
through the equilibrium position, the potential energy vanishes, having been converted
completely into the kinetic energy, K.E. = 1

2mv2. This gives us

mg(L− L cos θ0) =
[
K.E. + V

]
at θ=θ0

!=
[
K.E. + V

]
at θ=0

= 1
2mv2 ,

where “ !=” is the equality enforced by conservation of energy. Solving this for the
speed, we have v =

√
2gL(1− cos θ0) = 2.293m/s ≈ 2.25m/s. [=10pt]

b. The total energy of the bob of mass m=0.1kg remains constant, by conservation of
energy. Therefore, it is the same when swinging through any particular position, such
as τ = 1

2τ0 or any other, and we are free to pick the one where the evaluation is easiest,
such as the original position, at θ = θ0. There K.E. + V = 0 + mgL(1− cos θ0) =
0.263J ≈ 0.26J, which is determined in terms of the explicitly given quantities. Al-
ternatively, at the equilibrium point, θ=0, K.E.+V = 1

2mv2 +0, for which we’d need
to use the value for v calculated in part a., and so introduce additional calculational
error. To calculate the total energy as E = 1

2mv2 + mg(1− cos θ), you need to know
both τ and v at that particular position, which (both clearly, and clearly unnecessarily)
complicates the calculations even more. [=10pt]

3. A white marble (of mass mw=0.01kg) hits a red marble (of mass mr=0.02kg, originally
at rest) at a speed vwi=10m/s and is (itself, the white marble) scattered at the angle θ=60◦

left of its original direction. This problem is very closely modeled on the worked Example
9-11, and we follow the same procedure, noting however that the masses of the two objects
are not the same (see problem 53). Then conservation of energy, and momentum in the
direction of the incoming white marble and perpendicular to it produces the system of
three equations:

1
2mwv2

wi = 1
2mwv2

wf + 1
2mrv

2
rf , (1a)

mwvwi = mwvwf cos θ + mrvrf cos φ , (1b)

0 = mwvwf sin θ + mrvrf sinφ . (1c)

From Eq. (1c), we obtain
sinφ = −mw

mr

vwf

vrf
sin θ , (2)

–2–
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and see that we need the ratio vwf/vrf to find the scattering angle of the red marble.
In Eqs. (1b, c), we move the terms with vwf to the left and square them:

m2
wv2

wi − 2m2
wvwivwf cos θ + m2

wv2
wf cos2 θ = m2

rv
2
rf cos2 φ , (1b′)

m2
wv2

wf sin2 θ = m2
rv

2
rf sin2 φ . (1c′)

We sum these equations, use that sin2 α + cos2 α = 1 for any angle and that

v2
rf =

mw

mr

(
v2

wi − v2
wf

)
, (3)

from Eq. (1a), to obtain:

m2
wv2

wi − 2m2
wvwivwf cos θ + m2

wv2
wf = m2

r·
mw

mr

(
v2

wi − v2
wf

)
,

After combining like terms and dividing through by v2
rf , we obtain:

v2
wf − 2

mwvwi cos θ

mw+mr
vwf +

mw−mr

mw+mr
v2

wi = 0 ,

from which the speed of the white marble after the collision is

vwf =
[
mw cos θ

mw+mr
±

√
m2

w cos2 θ

(mw+mr)2
− mw−mr

mw+mr

]
vwi = 7.676m/s .

On inserting the numerical values, we see that the ‘-’ option would lead to nevative speeds
and is therefore unphysical.

a. Inserting this in Eq. (3) (chosing the ‘+’ sign), we obtain the speed of the red marble
after the collision to be vrf = 4.532m/s≈ 5m/s. [=20pt]

b. The scattering angle of the red marble is now obtained from Eq. (2), substituting the
above results. We may, fo course, substitute the above analytic expression for vwf ,
but this does not simplify at all; it is therefore better to substitute the numerical value
of the quantities on the right hand side: φ = −47.17◦ ≈ −60◦, i.e., 60◦ to the right
since θ = 60◦ > 0 was given to “the left.” [=15pt]

I admit that 47.17◦ is almost half-way between 30◦ and 60◦, but it is still closer
to 60◦. Note however that simply makes no sense chosing φ to be to the left—how
could the marbles scatter off of each other but still go to the same side?!? So, even if
you were guessing with but half a brain, you had 50% to guess correctly.

4. a. To tighten bolts with a torque τ=200m·N, a mechanic who can push at most
Fm=1, 000N must use a wrench of a length at least L = τ/Fm = 0.2m. [=10pt]

b. The force at the edge of a bolt (with diameter D=10mm) is τ/(D/2) = 2τ/D = 40
kN, since the distance from the pivotal point to the edge is 1

2D, the radius of the bolt. [=10pt]

5. A m=70Tg meteorite hits the Earth Eastward, tangentially and in the equatorial
plane at a speed of v=10km/s, and remains stuck. Since the meteorite is now stuck
with the Earth, the angular momentum of the Earth after the collision equals the sum of

–3–
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angular momenta of the Earth before the collision and the meteorite (see Example 11-7
and problem 37). Equating then the angular momentum just before the collision with the
one just after the collision, we have

IEωi + Rmv = Li
!= Lf = (IE + mR2)ωf =

IE + mR2

T + δT
,

where IE = 2
5MR2 is the moment of inertia of the Earth (assuming that it is a uniform

sphere rotating about an axis passing through its center), Rmv is the angular momentum
of the meteorite at the moment of striking Earth. The Earth’s rotational frequency before
the collision is ωi = 1/T and equals 1 revolution per day, so that T is the duration of
a day before the collision: T = 86, 400 s. After the collision, the frequency becomes
ωf = 1/(T+δT ), where δT is the inflicted change in Earth’s day. Solving for δT , we have
that the Earth day changes by [=10pt]

δT =
IE + mR2

IE/T + mRv
− T =

[
IE + mR2

IE + mRvT
− 1

]
T . (4)

Before we substitute any numerical value, it is worthwhile noting that there are two com-
peting effects: (1) the increase of the moment of inertia from IE to IE+mR2 on account
of the meteorite getting stuck in Earth’s mantle, and (2) the addition of the meterorite’s
angular momentum, mRv, to that of Earth. While the former increases the length of the
day, the latter decreases it. This becomes clearer upon bringing the quantity in square
brackets in Eq. (4 )to a common denominator:

δT =
mR2 −mRvT

IE + mRvT
T . (4a)

As to the amount of change, δT , that these two effects impart, note that (in kgm2)

mR2 = 2.849×1024 , mRvT = 3.859×1026 , IE = 9.720×1037 .

That is, the first (slowing down) effect is more than a hundred times smaller than the
second (speeding up), but even this is eleven orders of magnitude smaller than Earth’s
original moment of inertia, IE . We can therefore immediately conclude that the change
in Earth’s day should be about eleven orders of magnitude smaller than the day itself,
i.e., around 10−7 s. Indeed, inserting the numerical values in Eq. (4, ) we find that δT =
−3.941×10−12T = −0.34µs, and so the closest value among those give (albeit still five
orders of magnitude wrong) is δT ≈ 0.1 s.

6. A plank (of mass m=200kg and length L=2m) hangs on a cable attached a distance
d=0.1m from each end. [=10pt]

a. The torque about each attachment point must be zero, for the plank is stationary.
Thus the torque produced by the weight of the plank (at the center of mass) and by
the tension in each cable balance:

mg(
L

2
−d) = Ft(L−2d) , so FT (empty) = 1

2mg = 981N ≈ 1kN ,

–4–
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as one would expect by noting that the weight of the plank is symmetrically supported
by the two cables. [=10pt]

b. With the window-washer of mass M=65kg at the very edge of the plank, the balance
of torques through the attachment point further from her (which involves the tension
force in the cable nearest to her) becomes

mg(
L

2
−d) + Mg(L−d) = FT (L−2d) ,

from which [=10pt]

FT (with washer) = 1
2mg + Mg

L−d

L−2d
= 1621.87N ≈ 1.6kN .

Finally, two remarks:
1. Throughout the test, the number of significant figures given does not have any par-

ticular significance, and is done merely so as to (a) allow the student to check their
own (highly recommended! ) calculations, and to (b) offer enough precision so as to be
able to choose among the offered answers. This practice makes sense in view of the
fact that we have no information on the precision of any of the given data, and hence
cannot even guess as to the actual (experimental) error in the calculations.

2. Several of you have displayed extreme lack of thinking in the test, by giving mutually
exclusive answers to two parts in a given problem. For example, one student chose
the answers in the last problem to be a.: 10 kN, and b.: 1.3 kN!

How can anyone, remotely awake, claim that the tension in a cable supporting
the empty plank is almost seven times that of the tension in the cable supporting the
same plank with the window washer on top of it!?! Such students should have been
penalized, perhaps by subtracting the points for such hideously wrong answers!

Thus emerges a following grading scheme proposal:
a. full points for the correct answer;
b. no points for a wrong answer which does not contradict another given answer;
c. negative full points for wrong answers that contradict another answer;
d. an added option of “I don’t know,” to carry, say 1

4 of points, so as to reward
honesty.

Everyone who got this far in reading this posting, please send your opinions about
this grading scheme proposal to thubsch@howard.edu.

–5–


