1. The differential equation (a body falling under the influence of gravity and resisted by air drag)

$$
\begin{equation*}
m \frac{\mathrm{~d} v(t)}{\mathrm{d} t}=m g-b v(t), \quad \text { or } \quad \frac{\mathrm{d} v(t)}{\mathrm{d} t}=g-\frac{b}{m} v(t) \tag{1}
\end{equation*}
$$

may easily be solved by the 'trial-and-adjust' method. First, we note that the equation is linear in $v(t)$. This allows us to solve the equation by means of a superposition (addition) of the solutions of the two simpler equations:

$$
\begin{equation*}
\frac{\mathrm{d} v_{1}(t)}{\mathrm{d} t}=g, \quad \text { and } \quad \frac{\mathrm{d} v_{2}(t)}{\mathrm{d} t}=-\frac{b}{m} v(t) . \tag{2a,b}
\end{equation*}
$$

The first of these, Eq. (2a), is solved by $v_{1}(t)=v_{10}+g t$ (as seen before), while Eq. (2b) is solved by remembering that a derivative of the exponential function is proportional to the exponential function itself, so that $v_{2}(t)=v_{20} e^{-b t / m}$. This indeed satisfies Eq. (2b), as is easy to verify by substituting.

Then, we look for the general solution to the original equation (1) in the form

$$
\begin{equation*}
v(t)=A+B t+C e^{D t} \tag{3}
\end{equation*}
$$

From this, we calculate the derivative to be

$$
\begin{equation*}
\frac{\mathrm{d} v(t)}{\mathrm{d} t}=B+C D e^{D t} \tag{4}
\end{equation*}
$$

Substituting (4) in the left-hand-side and (3) in the right-hand-side of Eq. (1), we obtain:

$$
B+C D e^{D t}=g-\frac{b}{m}\left(A+B t+C e^{D t}\right)=\left(g-\frac{b}{m} A\right)-\frac{b}{m} B t-\frac{b}{m} C e^{D t}
$$

Equating the coefficients of $t^{0}=1=$ const., $t^{1}=t$ and $e^{D t}$, we have that

$$
\begin{equation*}
B=g-\frac{b}{m} A, \quad 0=-\frac{b}{m} B, \quad \text { and } \quad C D=-\frac{b}{m} C \tag{5a,b,c}
\end{equation*}
$$

Of these, Eq. (5b) forces $B=0$, after which Eq. (5a) sets $A=\frac{m g}{b}$, while Eq. (5c) sets $D=-\frac{b}{m}$. This then produces

$$
v(t)=\frac{m g}{b}+C e^{-b t / m},
$$

which indeed has one integration constant: C, as should be the case for a first order differential equation. To determine this last constant, we can use the initial condition, noticing that

$$
v(0)=\frac{m g}{b}+C \stackrel{\text { def }}{=} v_{0},
$$

is the initial (at $t=0$) speed and so can write $C=v_{0}-\frac{m g}{b}$, whereupon

$$
v(t)=\frac{m g}{b}+\left(v_{0}-\frac{m g}{b}\right) e^{-b t / m}=\frac{m g}{b}\left(1-e^{-b t / m}\right)+v_{0} e^{-b t / m}
$$

Finally, we know that the body has reached the terminal speed, v_{T}, if it no longer accelerates, i.e., when the gravitational force is cancelled by the air drag, $m g=b v_{T}$, so that $v_{T}=\frac{m g}{b}$. Indeed, when $t \rightarrow+\infty$, then $e^{-b t / m} \rightarrow 0$, and so $v(+\infty)=\frac{m g}{b}=v_{T}$. This provides an auxiliary check for our general solution. Notice that the value of the terminal speed, $v_{T}=\frac{m g}{b}$, is independent of the initial speed, v_{0}. Also, note that $v(t)$ does not in fact reach v_{T} at any finite time, but merely approaches it asymptotically.

