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ABSTRACT

Certain special kinetic terms in supersymmetric field theories

lead to exactly marginal operators in the sense of renormalization

flow. Such terms are shown to arise naturally in 2-dimensional

σ-models describing 4-dimensional superstring compactification,

but many other models can also contain them. They are closely

related to chiral gauge and gravitational anomalies on one hand

and Ricci-flatness on the other.
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Introduction. The interest in 2-dimensional mean-field theories with world sheet (2,2)-

supersymmetry has been revived recently in connection to 4-dimensional string models [1].

It has been argued on general grounds, and subsequently proven [2], that exact quantum

characteristics of the simplest such models can be extracted from a suitable classical action

functional even though its (super)conformal invariance is spoiled by quantum corrections. In

particular, the classical Wess-Zumino type action]2

An def
=

∫
d2σ d2ς d2ς K(Φ†,Φ) +

( ∫
d2σ d2ς Φn+1 + h.c.

)
(1)

suffices to determine the central charge of the (super)conformally invariant model into which

An flows under renormalization, the complete set of marginal operators and their operator

product expansion coefficients. Moreover, this data is independent of the explicit form of

the D-term K(Φ†,Φ), many choices of which are in a wide universality class represented by

the simplest such choice, K0(Φ
†,Φ) = Φ†Φ. The latter is argued to have positive anomalous

dimension and thus irrelevant [1], whence all such choices of K(Φ†,Φ) seem to yield irrelevant

operators in the sense of renormalization flow.

The purpose of this short note is to point at a perhaps less generic class of D-terms which,

in a wide variety of field theories, do produce exactly marginal operators; we refer to these as

marginal kinetic terms. It is of course gratifying to realize that precisely such kinetic terms

arise naturally in many 2-dimensional σ-models which describe superstring models with 4-

dimensional Minkowski spacetime. Inclusion of such kinetic terms opens the possibility to

describe Kähler variations in complement to the Landau-Ginzburg description of Calabi-Yau

superstring vacuua [1], which was known to describe well the complex structure deformations.

Perhaps not surprisingly, this will involve the “twisted chiral” superfields of Ref. [3]. This is

in accord with the general (super)conformal field theory analysis : polynomials in the chiral

superfields Φµ correspond to elements of the (c, c)-ring, while twisted chiral (composite) fields

relate to the (a, c)-ring.

It will also transpire that the same marginal kinetic terms carry the information about the

various anomalies in the models. In particular, in suitable 2-dimensional σ-models, the Ricci-

flatness requirement in the Calabi-Yau compactification appears as a chiral gauge anomaly

cancellation, while the central charge of the Virasoro algebra is of course the chiral gravi-

tational anomaly. That the latter one cancels non-trivially between various fields and their

ghost counterparts, rather than directly among (super)fields of a single sector, ensures the

appearance of such marginal kinetic terms. In field theories where spacetime is more than 2-

dimensional, the rôle of these marginal kinetic terms is less universal, but otherwise analogous

to the 2-dimensional case.

]2We use the superspace notation where σ±± are the world sheet light-cone coordinates and ς±, ς±

are their (2,2)-superpartners; the ± sub- and superscripts are simply units of spin.
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The CPn model. We start with the well known supersymmetric CPn model in 2-dimensional

spacetime and (2,2)-supersymmetry (the analogous will be true of N=1 supersymmetry in 4-

dimensional spacetime). The classical action is

A[CPn]
def
=

∫
d2σ d4d2ς d2ς

(
‖Φ‖2e−V + n+1

2f
V
)
, ‖Φ‖2 def

=
n∑
µ=0

Φ†µ Φµ . (2)

It involves n+1 chiral superfields, Φµ, and a gauge superfield, V for which no kinetic term is

introduced. V gauges a complexified and supersymmetric version of U(1), which we denote

by Ũ(1) and which includes U(1), dilation and their supersymmertic counterpart, a chiral

symmetry acting on the fermion component fields in Φµ. Indeed, the body of the classical

configuration space (spanned by the unconstrained bosonic fields) is [Cn+1−{0}]/CU(1) =

CPn. The Ũ(1) gauge transformation, also known as the Kähler symmetry, acts by

Φ → Θ Φ , V → V + log Θ + log Θ† , (3)

where Θ is an arbitrary chiral superfield and Θ† its antichiral hermitian conjugate.

The equation of motion for V reads V = log( 2f
n+1
‖Φ‖2). Using this to eliminate V is

equivalent to path-integration over V and produces, up to an uninteresting additive constant,

A′[CPn] =
∫

d2σ d2ς d2ς K(FS)(Φ
†,Φ) , K(FS)(Φ

†,Φ) = n+1
2f

log ‖Φ‖2 , (4)

where ‖Φ‖2 =
∑n
µ=0 Φ†µ Φµ and K(FS) is the Fubini-Study Kähler potential. Since the action (2)

is quadratic in Φ’s, it is also possible to integrate out the Φ’s, which results [4] in :

A′′[CPn]
def
=

n+1

4π

∫
d2σ

( ∫
dς+ dς− S[log(S/µ)− 1] + h.c.

)
+ . . . (5)

where the higher terms all involve
∫

d2ς d2ς -integrals.

The superfields S
def
= D+D−V and its hermitean conjugate are both twisted chiral su-

perfields [3]. Since the leading terms in A′′[CPn] involve integration over only “half” of the

superspace, these terms are protected by the usual non-renormalization theorems regarding

(twisted) F -terms. So, while many D-terms supply only irrelevant operators [2], there do exist

D-terms such as in Eq. (2) which have a marginal residue, represented in Eq. (5). That the

kinetic terms considered here are not in the universality class represented by K0(Φ
†,Φ) = Φ†Φ

is most easily seen from the distinct behaviour of the partition functionals. When defined with

the kinetic term (4), a partition function clearly has an essential singularity at Φµ = 0. Re-

moving the origin from the field-space, however, changes its topology and is seen to distinguish

the two universality classes.

A few remarks are in order before carrying on to related models. Firstly, the continuous

gauge symmetry (3) is anomalous; while the classical actions (2) and (4) are invariant, the

action (5) is not, except for the leading term S and its conjugate [4]. The “leading log” term
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S log(S/µ) and its conjugate carry the Ũ(1) gauge-anomaly of the CPn model; the numerical

value is (n+1) and equals the first Chern class of CPn; the 1/4π factor turns out to be merely a

suitable normalization. Because of the (n+1) prefactor, however, a Zn+1 subgroup of (3) does

remain a symmetry and will have to be included in the GSO projection in Landau-Ginzburg

models.

Secondly, note that the equation of motion for V and the definition of the superfield S

lets us re-interpret Eq. (5) in terms of the Φ’s. To that end we record

S ∼ (D+Φµ)G
(FS)
µν (D−Φ†ν) , G

(FS)
µν

def
= ∂µ ∂ν K(FS)(Φ,Φ

†) . (6)

where G
(FS)
µν is the Fubini-Study metric. Clearly, the (anticommuting) fermionic derivatives

act as the field theory generalization of the dz’s and dz’s]3. Hence, the quantity

(S“+”S†)
def
= (

∫
dς+ dς− S +

∫
dς− dς+ S†) (7)

has a natural interpretation as the (super)field theory generalization of the Fubini-Study

Kähler (1,1)-form; this supports the identification of the Ũ(1)-anomaly with the first Chern

class. Note that the term (7), with the interpretation (6), also appears when the “twisted

half” of the fermionic integral is explicitly performed in Eq. (4).

Finally, the coupling constant f fromA[CPn] has undergone a “dynamical transmutation” :

in Eq. (5), it occurs through the renormalization ‘mass’ scale]4 µ=const. ε e2π/f , where ε is the

dimensional regularization parameter. When describing a σ-model with CPn1 × · · · × CPnm

target space, the effective action (5) is replaced by a linear combination of such actions, one

for each CPni factor, which contains the linear combination
∑m
i=1(const.+(2π/fi))(Si“+”S†i ).

Indeed, the Kähler class of a product of CPn’s is a linear superposition of the individual Kähler

classes.

Constrained Models. Many Kähler manifolds are constructed by embedding in CPn’s and

rather important examples are obtained as the (sub)space of common solutions to a system

of constraints in a product of complex projective spaces. Most naturally, one imposes the

constraints P a(Φ)=0 by means of Lagrange multiplier fields on a system of CPn models [6,7].

The corresponding action is Akin. + Acon., where

Akin. =
m∑
i=1

∫
d2σ d2ς d2ς

(
‖Φi‖2e−Vi +

ni+1

2fi
V i

)
, (8)

Acon. =
K∑
a=1

∫
d2σ d2ς

(
Λa P

a(Φ) + h.c.
)

(9)

]3Indeed, the lowest component of the superfield D±Φµ is ψµ± and has been identified as a formal
analogue of dz ever since the early work on σ-models [5].

]4In d-dimensional spacetime, µ has dimension (d−2)/2 and is actually dimensionless in d = 2.
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and where Φµi
i are coordinate superfields on CPni . While this provides the exact field theory

parallel of the construction of such Kähler spaces, its use in practical computations is limited,

because of the non-linear couplings in (8) and since the Lagrange multiplier fields effectively

introduce infinitely strong coupling (see however Ref. [8,9] for some applications).

Since the terms inAcon. are generally not quadratic in the Φ’s, we cannot in general perform

the
∫
D[Φ] path-integration and obtain the constrained space analogues of Eqs. (5) and (6). On

general grounds, we know that analogous relations must exist although an explicit evaluation

eludes us. Clearly, the analogue of S should then again be of the form (6), featuring, however

the physical metric on the constrained space M,

SM ∼ (D+Φµ)G
(M)
µν (D−Φ†ν) , (10)

where the indices µ and ν have to be restricted so as to label directions locally (co)tangent to

M⊂ CPn1×· · ·×CPnm . This is most easily performed by inserting appropriate local projection

operators of the form 1l−[∂P ], where the matrix of gradients ∂MP
a(Φ) and its conjugate serve

as projections (locally on M) from CPn1 × · · · × CPnm to the directions transversal to M.

Having identified the Ũ(1)-anomaly (n+1) S log(S/µ) with the first Chern class of CPn,

one expects that integration over the Φ’s, for a degree-q polynomial constraint would reduce

this anomaly to (n+1− q) S log(S/µ). For example, if the constraint polynomial were linear,

it would simply require a linear combination of Φµ’s to vanish. Integrating the remaining n

Φµ’s would yield the decreased anomaly nS log(S/µ), as expected.

In the general case, the explicit path-integration eludes us, but the anomaly contribution

can be discerned by considering the transformation of the path-integral measure [10]. Alterna-

tively, in particle physics parlance, integrating out the superfields Φµi
i allows us to interpret the

Λa as bound states of the charge-conjugates of those Φ’s which appear in P a(Φ) (see Ref. [11]

for a situation where such an interpretation is experimentally verified), so that the so “dressed”

Λa’s will have charge]5 −qia with respect to V i, where qia is the degree of P a(Φ) with respect

to the coordinate superfields of CPni . There will also appear effective propagators for Λa’s

and V i’s (Si’s), whence the anomaly 1-loop diagrams yield the coefficients (ni+1 −∑K
a=1 q

i
a)

in place of (ni+1) in Eq. (5). This is in perfect agreement with our identification of the chiral

gauge symmetry anomaly with the first Chern class of the constrained subspace M.

]5Note that, before integrating the Φµ out, the Lagrange superfields Λa in Acon. must have no
charge with respect to the gauge fields V i; for, if they had, they would have to interact with the V i.
In supersymmetric theories this would be possible only through kinetic terms for Λa’s which would
contradict their rôle as Lagrange multiplier superfields.
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The Calabi-Yau case. For M to be a Calabi-Yau space, the first Chern class of M has to

vanish, whence [12]

K∑
a=1

degCPni

(
P a(Φ)

)
= ni+1 , i = 1, . . . ,m . (11)

Therefore, the the chiral gauge anomaly of each V i is completely cancelled. However, the

numerical pre-factor in the effective action analogous to A′′[CPn], Eq. (5), appears also to

have been annihilated. Can it be that the anomaly cancellation efforts have been counter-

productive, in that Eq. (11) not only ensures cancellation of the chiral gauge anomaly, but

also kills the marginal terms in an effective action which represent the Kähler variations?

The answer clearly ought to be negative. In fact, it is not hard to see how that comes

about. In any realistic situation, the couplings to (super)gravity should be included. When

considering 2-dimensional field theories to describe Calabi-Yau compactification of heterotic

strings, for example, the constrained (product of) CPn model(s), Eqs. (8) and (9), should be

coupled to (1,0)-supergravity [7]. Indeed, the (super)gravitational anomaly [13] is nothing but

the well-known trace-anomaly, i.e., the central charge of the Virasoro algebra. But then, the

locally (1,0)-supersymmetric version of Akin.+Acon. in fact must be anomalous and precisely

so as to cancel the contributions of a flat σ-model representing the 4-dimensional spacetime

and of the super-reparametrization ghosts. In 2-dimensional field theories, the chiral gauge-,

spin-3/2 and gravitational anomalies are all carried by the same operator [13]. It follows that

the effective action for Calabi-Yau compactification of heterotic strings is bound to contain the

marginal terms

c

4π

∫
d2σ

( ∫
dς+ dς− SCY [log(SCY /µ)− 1] + h.c.

)
, (12)

where c is the central charge, c = 9 for (2,2)-supersymmetric σ-models with a complex 3-

dimensional target space. The SCY may be thought of, in analogy to Eq. (10), as

SCY ∼ (D+Φµ)G
(CY )
µν (D−Φ†ν) , (13)

where the same remark applies as for Eq. (10) and where G
(CY )
µν is the “repaired” combination

of Fubini-Study metrics : From the linear combination
∑m
i=1(const.+(2π/fi))(Si“+”S†i ), one

constructs first the Ricci-flat metric following Yau [14], and then corrects this along the lines

in Ref. [15] to restore (super)conformal invariance of the complete model order by order. Thus,

SCY is the correspondingly “repaired” linear combination of the Si from the CPn models. This

again perfectly agrees with the identification of (SCY “+”S†CY ) with the Kähler class on the

Calabi-Yau space and may be thought of as the result of integrating the true, superconformal

D-term
∫

d2ς d2ς KCY over the “twisted half” of the fermionic space. Note that even after

dropping the anomalous S log S terms (after all, the anomaly eventually cancels out), the

dependence on the fi’s remains through the log µ factor; the fi’s in fact control the dependence

of SCY on the Si.
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That the trace-anomaly had to appear through a marginal operator should have been

obvious since it is a physical observable and can not be phased away through renormalization.

That the gravitational and the gauge anomalies appear through the same marginal operator

is a special feature of 2-dimensional spacetime; Eq. (12) then appears merely as a “twisted

chiral” re-write of the more standard expressions.

Now, by choosing the ‘physical’ gauge in which V i = 0 (gauge fields in 2-dimensions are

unphysical) and also Λa = λa (const.), in favourable circumstances, we obtain the Landau-

Ginzburg models which were so successfully analyzed in Ref. [1,2]. Notably, however, these

models generally lack a description of the Kähler moduli fields and also the related matter

fields. Recall that the Kähler (1,1)-forms of the CPn’s span (at least a part, but often all of) the

Kähler variations of the Calabi-Yau space. The lack of Kähler variations is therefore seen as the

artefact of the V i = 0, i.e., Si = 0 gauge]6. Indeed, the kinetic terms are now just the standard

Wess-Zumino type, which are in the generic universality class and irrelevant. Renormalization

flow will therefore fix them and this is explicitly seen through the correspondences with the

exactly soluble models [1,2,6] which are known to have the Kähler moduli (i.e., relative and

overall “sizes”) fixed.

Finally, note that world-sheet instantons are expected to contribute to the terms (12).

Determining these corrections appears to be a rather interesting problem for future study,

because of the following intriguing possibility : Assume that the fully corrected terms will,

instead of just SCY , contain a polynomial Q(S) and that we may ignore the anomalous

“S log S” terms. The resulting action would be strikingly similar to a Landau-Ginzburg

model in which the variations of Q(S) are the marginal (twisted) F -terms describing the

Kähler variations of our Calabi-Yau σ-model with target space M. Alternatively, it could be

interpreted as the Landau-Ginzburg model for describing the complex structure variations of

the mirror Calabi-Yau σ-model, one which has target space W , such that

Hq(M, TM) ∼= Hq(W , TW*) (14)

is an equivalence of ring structures (Yukawa and all higher couplings), not only the equality

of the dimensions of the respective spaces.
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]6Note that it would have made no sense to fix a gauge if the respective gauge symmetry were
anomalous, i.e., if the cancellation condition (11) were not enforced. This cancellation condition, in
turn, selects Calabi-Yau target spaces.
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