Exam Midterm 1; 2010, Feb. 22.
Student:
This is an "open Textbook (Arfken), open lecture notes" exam. For full credit, show all your work. The part of your solutions completed in class staple to the question sheet; then complete the rest of the Exam and hand it in by Wednesday, 02/24/10, 5:00 pm, for $2 / 3$ of the indicated credit. Budget your time: first do what you are sure you know how; use short-cuts whenever possible (but be prepared to explain them afterwards, if necessary).

1. Solve the differential equation

$$
\frac{\mathrm{d} x}{\mathrm{~d} t}+e^{t / t_{0}-x / x_{0}}=\frac{x_{0}}{t_{0}}, \quad x_{0}, t_{0} \neq 0
$$

\boldsymbol{b}. In your solution, take carefully the limit $x_{0} \rightarrow 0$, and verify that this solves the $x_{0} \rightarrow 0$ limit of the equation itself.
Hint: Try the "separation" method, or a judicious change of variables x, t. You may benefit from using L'Hospital's rule. I haven't collected the material in "Know Thy Math" in vain, I hope.
2. Solve the differential equation

$$
(\dot{x})^{2}+2 g_{0}\left(t\left[\dot{x}+v_{0}\left(e^{\dot{x} / v_{0}}+1\right)\right]-x(t)\right)=0, \quad g_{0}, v_{0} \neq 0
$$

b. In your solution, take carefully the limit $v_{0} \rightarrow 0$, and verify that this solves the $v_{0} \rightarrow 0$ limit of the equation itself.
Hint: See the hint to the previous problem. Also, $L i_{s+1}(z):=\int_{0}^{z} \frac{\mathrm{~d} t}{t} L i_{s}(z)$ is a recursive definition of a class of special functions, where $L i_{0}(z)=\frac{z}{1-z}$ and $L i_{1}(z)=-\ln (1-z)$, but where $L i_{s}(z)$ for $s>1$ cannot be expressed in terms of elementary functions without integration.
3. Consider solving the differential equation $x^{2} y^{\prime \prime}+(\alpha x-\beta) y^{\prime}-\gamma y=0$, in the series form, $y=\sum_{k=0}^{\infty} c_{k} x^{k+s}$.
\boldsymbol{a}. Calculate the possible value(s) of s; $\quad[=5 p t]$
b. Calculate the recursion relation for the c_{k} 's.
\boldsymbol{c}. Determine if the resulting series converges. Explain why (not).
\boldsymbol{d}. Determine a α, β, γ for which this solution (nevertheless) does make sense. Explain.
4. Given that $y(x)=\sqrt{x}$ solves $2 x^{2} y^{\prime \prime}+5 x y^{\prime}-2 y=0$, find and verify the second solution. $\quad[=10 p t]$
5. Consider the 2nd order ordinary differential equation $f_{\alpha}^{\prime \prime}-\sqrt{x+1} f_{\alpha}^{\prime}+(x+\alpha) f_{\alpha}=0$.
\boldsymbol{a}. Modify it, so as to become self-adjoint; cf. p. 623 and Eq. (10.7).
\boldsymbol{b}. Once so rewritten, compare with Eq. (10.8) and identify α as the eigenvalue; read off \mathcal{L}, the weight-function $w(x)$, and check if the interval $x \in[-1,1]$ is compatible with Eq. (10.25) and self-adjointness, i.e., Hermiticity. See § 10.2.
\boldsymbol{c}. Write down the orthogonality relation for the $f_{\alpha}(x)$, in the manner of Eq. (10.36).
Hint: The last two parts are bonus-for reading the text beyond what was covered in class.

