Howard University

Washington, DC 20059

Mathematical Methods II

The Final Exam

Instructor: T. Hübsch
(Student name and ID)
This is an "open Textbook (Arfken), open lecture notes and handouts" take-home exam, due by 12:00 noon of Wednesday, 04/21/10. For full credit, show all your work. If you cannot complete one part of a calculation, a clear description of the procedure/method will still earn you partial credit. No collaboration or consultation is allowed, and you may rely only on results from the textbook, lecture notes and class-handouts.

1. For the inhomogeneous differential equation $x y^{\prime \prime}-2 y^{\prime}-\alpha x y=x$:
a. Find each singular point and whether it is essential or nonessential (regular). [5+5pt]
b. Find a power-series solution $y_{\alpha, h}(x)$ of the homogeneous equation and specify the possible choices of α for which this solution makes sense.
c. Find the associated self-adjoint homogeneous equation and a domain $x \in\left[x_{1}, x_{2}\right]$ within which the associated differential operator is self-adjoint, and specify the orthogonality relation for the solutions $y_{\alpha}(x)$.
d. Specify the singularity structure expected of the "second" homogeneous solution, as defined in Arfken's general formula (9.128).
e. Find a low integral value of α for which the particular solution of the above inhomogeneous equation is a low-degree polynomial; find this particular solution.
(Recall: if y_{p} is a particular solution and $y_{h, 1}, y_{h, 2}$ two independent solutions of the homogeneous part, the general solution of the inhomogeneous equation is $y_{p}+C_{1} y_{h, 1}+C_{2} y_{h, 2}$.)
2. Solve the diffusion equation $\frac{\partial}{\partial t} T=k \vec{\nabla}^{2} T$ by (a) separating variables, (b) using standard solutions and (c) fitting the boundary conditions. $T(\vec{r}, t)$ is confined within a quarterspherical cavity and vanishes on: the flat vertical walls at (1) $\varphi=0$ and (2) $\varphi=180^{\circ}$ and (3) the flat horizontal floor at $\theta=90^{\circ}$, and (4) the quarter-spherical dome at $r=a$, respectively. Alternatively [10pt, bonus], solve this using the Fourier transform.
3. Consider the function

$$
f(x)= \begin{cases}x^{2}-1, & \text { for }-1 \leq x<1 \\ 4 x-x^{2}-3, & \text { for } 1<x \leq 3 \\ 0, & \text { otherwise, within } x \in(-\infty,+\infty)\end{cases}
$$

a. Find a Fourer series representation for $f(x)$.
b. Find a Fourer integral representation for $f(x)$.
(Sketch the function first; specify any additional conditions as may be necessary to solve either of the two tasks, and explain why.)
4. Using Laplace transformation, solve the system of differential equations

$$
\begin{array}{ll}
\dot{C}_{1}(t)=-C_{1}(t)+C_{2}(t), & C_{1}(0)=1 \\
\dot{C}_{2}(t)=-C_{1}(t)+C_{2}(t)-C_{3}(t), & C_{2}(0)=0 \\
\dot{C}_{3}(t)=+C_{2}(t)-C_{3}(t), & C_{3}(0)=0
\end{array}
$$

subject to the specified initial conditions, and where the over-dot denotes a derivative by time, t.

