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Don't Panic !

Mathematical Methods I
Midterm 2: 2014, Nov. 12. Solution Soliloquy

As this solution set is also used to to discuss the computations in a hopefully pedagogical manner, it is
considerably longer, more varied and more detailed than was expected of the student solutions.

1. Consider the function

f(x) :=

{
1−x2, for x ∈ [−1, 1],

0 otherwise.
(1)

a. Sketch the function and determine kn so f(x) could be represented, within x ∈ [−1, 1], by the[5 pt]

Fourier series a0
2
+
∑∞

n=1

[
an cos(knx) + bn sin(knx)

]
.

Solution

A sketch of the function f(x)

is shown to the right. The key

feature to observe is that the

function is symmetric with re-

spect to the reflection x → −x:

f(−x) = f(x). Also, the ob-

vious boundary conditions are

f(−1) = 0 = f(1). -2 -1 1 2
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Since the function f(x) should be represented within x ∈ [−1, 1], we must choose kn so that the

summands cos(knx) and sin(knx) have an integral multiple of the full period (2π) between x = ±1.

That is, we require (we will return to this issue at the end of this problem):([
knx

]1
−1

=
[
kn(1)− kn(−1)

]
= 2kn

)
!
= n·2π, ⇒ kn

!
= nπ. (2)

That is, we seek a Fourier series representation

f(x) =
a0
2

+
∞∑
n=1

[
an cos(nπx) + bn sin(nπx)

]
. (3)

b. Compute an and bn in this Fourier series.[10+10 pt]

Solution

Since f(−x) = f(x) and sin(nπ(−x)) = − sin(nπx), we immediately conclude that bn = 0.

Next, we use the standard formula for the an coefficients, treating the n = 0 case separately.

The integrals are then all normalized by half of the span x ∈ [−1, 1], i.e., by 1
2
· 2 = 1:

a0 =

∫ 1

−1

dx f(x) =

∫ 1

−1

dx (1− x2) =
[
x− x3

3

]1
−1

=
(
1− (−1)

)
−
(13
3

− (−1)3

3

)
= 2− 2

3
=

4

3
.

For the remaining coefficients, we will need the integrals

an :=

∫ 1

−1

dx cos(nπx)f(x) =

∫ 1

−1

dx cos(nπx)(1−x2), change:
{ ϕ=πx,

x=ϕ/π,

=
1

π

∫ π

−π

dϕ cos(nϕ)
(
1−

(
ϕ
π

)2)
=

1

π

∫ π

−π

dϕ cos(nϕ)− 1

π3

∫ π

−π

dϕ cos(nϕ)ϕ2,



=
1

π

[sin(nϕ)
π

]π
−π︸ ︷︷ ︸

=0

− 1

π3

∫ π

−π

dϕ cos(nϕ)ϕ2,

where we evaluate the remaining integral integrating by parts:

= − 1

π3

{[(sin(nϕ)
n

)
ϕ2
]π
−π︸ ︷︷ ︸

=0

−
∫ π

−π

dϕ
(sin(nϕ)

n

)(
2ϕ

)}
= +

2

nπ3

∫ π

−π

dϕ sin(nϕ)ϕ,

=
2

nπ3

{[(− cos(nϕ)

n

)
ϕ
]π
−π

−
∫ π

−π

dϕ
(− cos(nϕ)

n

)
(1)

}
,

=
2

nπ3

{[(−(−1)n

n

)
π −

(−(−1)n

n

)
(−π)

]
+

1

n

∫ π

−π

dϕ cos(nϕ)

}
,

=
2

nπ3

{
−2π(−1)n

n
+

1

n

[sin(nϕ)
n

]π
−π︸ ︷︷ ︸

=0

}
= −4(−1)n

n2π2
(4)

Thus we have obtained

f(x) :=

{
1−x2, for x ∈ [−1, 1]

0 otherwise

}
=

2

3
− 4

π2

∞∑
n=1

(−1)n

n2
cos(nπx), |x| < 1. (5)

The illustration below shows how the Fourier series quickly approximates the true function f(x),

by plotting the series truncated to n ⩽ 1 (green), n ⩽ 3 (red), n ⩽ 6 (blue) and n ⩽ 9 (black):
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The plot of the Fourier series has been extended beyond x ∈ [−1, 1] to showcase the periodicity of

the Fourier series outside the required span/interval, x ∈ [−1, 1]. That is, the period of the Fourier

representation of f(x) is evidently 2, while the period of the whole collection {cos(nϕ), sin(nϕ), n =

1, 2, 3 . . . } of functions is 2π. The rescaling of the length of the period from 2 to 2π is accomplished

by the result (2). Since the region of interest was only x ∈ [−1, 1], the values x = ±1 are the

boundaries of the application region; that the Fourier series differs from the original function outside

those boundaries is not relevant.

c. Verify if the term-by-term d
dx
-derivative of this Fourier series represents df

dx
within x ∈ [−1, 1].[15 pt]

Solution

On one hand, df
dx

= −2x, whereas the term-by-term derivative of the Fourier representation is

d

dx

(2
3
− 4

π2

∞∑
n=1

(−1)n

n2
cos(nπx)

)
=

4

π

∞∑
n=1

(−1)n

n
sin(nπx). (6)
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To check that they agree, we determine the coefficients for the Fourier series of f ′(x) = −2x:

a0 =

∫ 1

−1

dx (−2x) = 0 and an =

∫ 1

−1

dx cos(nπx)(−2x) = 0; (7)

bn =

∫ 1

−1

dx sin(nπx)(−2x) =
[(

− cos(nπx)

nπ

)
(−2x)

]1
−1

−
∫ 1

−1

dx
(
− cos(nπx)

nπ

)
(−2),

=
4(−1)n

nπ
, which perfectly agrees with (6). ✓ (8)

We return now to the issue of determining kn in part a.

As indicated, kn is supposed to depend on n, and all Fourier series use sequences of trigono-

metric functions constructed by making the argument of the trigonometric functions be an integral

(n-fold) multiple of a suitably rescaling of the argument of the function to be represented. For

example, [1, Eqs. (19.10–12)] represents a function f(x) for x ∈ [−L,L] and uses

cos
(
nπx

L

)
and sin

(
nπx

L

)
. (9)

Each of these functions complete an integral (n) number of full periods between −L and L. (Sketch

a few of them, for a few small values of n, to convince yourself of this fact if it isn’t obvious.) Rather

than providing a general rationale for this requirement, let’s explore what happens when we do not

restrict kn other than writing kn = nk where k is left undetermined other than fixing k > 0, but we

do set L = 1. That is to say, let us explore

f(x) =
a0
2

+
∞∑
n=1

[
An cos(nkx) +Bn sin(nkx)

]
, a0 =

∫ 1

−1

dx f(x), (10)

An =

∫ 1

−1

dx cos(nkx) f(x) and Bn =

∫ 1

−1

dx sin(nkx) f(x), (11)

for the particular function at hand (1). It is straightforward that Bn = 0 since sin(nkx) are

odd (antisymmetric) and the function (1) is symmetric; their product must be an antisymmetric

function, whereby the integral in symmetric limits must vanish. On the other hand, integration by

parts readily produces

An =

∫ 1

−1

dx cos(nkx) (1−x2) = 4
sin(kn)− kn cos(kn)

k3n3
, n = 1, 2, 3 . . . (12)

Without having specified k, these remain functions of this continuous variable. Again, rather than

providing a general argument about a mandatory value for k, here are a couple of plots:
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Note that the period of this Fourer series is [−π
k
,+π

k
].
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k = π
1

?
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k = 4 (13b)

As soon as k > π, not only is the period [−π
k
,+π

k
] shorter than [−1, 1], but the Fourier series looks

nothing like the original function, plotted in thick black ink.
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k = 3π
2
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k = 2π (13c)

So, while k > π is unacceptable (the Fourier series looks substantially different from the original

function), the values k ⩽ π are acceptable for representing the function in the span x ∈ [−π
k
,+π

k
].

Within the x ∈ [−1, 1] interval, the choice k = π is optimal, since already the first four terms

(n ⩽ 3, plotted in green ink) represent the original function very well.

In addition, for k = π, the formula (12) simplifies to (4), which is at once both much simpler

and also a much faster-converging series: The blue, n ⩽ 9 truncation of (4) for k = π is already

remarkably close, while the corresponding truncations shown (13a) for k = 10 (left-hand side) and

k = 4 (right-hand side) are clearly considerably worse within the region of interest, x ∈ [−1,+1].

Thus—as the problem was given—it is not strictly wrong to not fix k = π; however, it must

be at least stipulated that k ⩽ π, with k = π being the optimal choice.

In turn, if—contrary to the statement of this problem—we were interested in representing the

function outside x ∈ [−1,+1], larger and larger values of k should be used. We will return to this

type of problem in Math Methods II (phys-217).

2. Given the generating function g(x, t) = ex(x+t) =
∑∞

n=0 An(x) t
n,

a. Compute the series representation of An(x) by expanding the generating function.[6 pt]

Solution

Writing ex(x+t) = ex
2
ext and expanding the two exponentials, we have

g(x, t) = ex(x+t) = ex
2

ext =
∞∑
j=0

(x2)j

j!

∞∑
n=0

(xt)n

n!
=

∞∑
n=0

[ ∞∑
j=0

x2j+n

j!n!︸ ︷︷ ︸
An(x)

]
tn,

An(x) =
1

n!

∞∑
j=0

x2j+n

j!
, =

xn

n!

∞∑
j=0

x2j

j!
=

xn

n!
ex

2

. (14)

In this case, the series is simple enough to re-sum the result; this is typically not the case.
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b. Compute the ∂
∂t
-derivative of g(x, t) =

∑∞
n=0An(x) t

n and the resulting recurrence relation.[6 pt]

Solution

We calculate the derivative separately from g(x, t) = ex(x+t) and from g(x, t) =
∑∞

n=0 An(x) t
n, and

equate the results:

∂g

∂t
=

∂

∂t
ex(x+t) = x ex(x+t) = x

∞∑
n=0

An(x) t
n. (15a)

=
∂

∂t

∞∑
n=0

An(x) t
n =

∞∑
n=0

An(x)n tn−1

︸ ︷︷ ︸
n 7→n+1

=
∞∑

n=−1

(n+1)An+1(x) t
n. (15b)

Note that this last series has the “extra term” at n = −1, but that this term in fact vanishes:

((−1)+1)A(−1)+1(x) t
−1 = 0A0(x) t

−1. Equating (15a) with (15b) therefore produces

0 =
∞∑
n=0

{
xAn(x)− (n+1)An+1(x)

}
tn ⇒ An+1(x) =

x

n+1
An(x) . (15c)

c. Compute the ∂
∂x
-derivative of g(x, t) =

∑∞
n=0 An(x) t

n and the resulting recurrence relation.[6 pt]

Solution

We again calculate the derivative separately from g(x, t) = ex(x+t) and from g(x, t) =
∑∞

n=0An(x) t
n,

and equate the results:

∂g

∂x
=

∂

∂x
ex(x+t) = (2x+t) ex(x+t) = (2x+t)

∞∑
n=0

An(x) t
n,

= 2x
∞∑
n=0

An(x) t
n +

∞∑
n=0

An(x) t
n+1

︸ ︷︷ ︸
n 7→n−1

= 2x
∞∑
n=0

An(x) t
n +

∞∑
n=1

An−1(x) t
n. (16a)

=
∂

∂x

∞∑
n=0

An(x) t
n =

∞∑
n=0

A′
n(x) t

n. (16b)

The second of the series in (16a) misses the n = 0 term. Equating (16a) with (16b) therefore

produces

0 =
{
2xA0(x)− A′

n(x)
}
t0 +

∞∑
n=1

{
2xAn(x) + An−1(x)− A′

n(x)
}
tn. (16c)

The initial, simpler term separately implies:

A′
0(x) = 2xA0(x), (16d)

which is in fact easy to solve:

dA0(x)

dx
= 2xA0 ⇒ dA0(x)

A0(x)
= 2x dx ⇒ A0(x) = a0 e

x2

. (16e)
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Given this solution and the algebraic recursion (15c), we in fact can compute the whole infinite

sequence of functions An(x), one-by-one. (Of course, (14) already gives each An(x), albeit in

power-series form.) Nevertheless, we are sort out also the generic (n ⩾ 1) recursion relation by

comparing the generic (n ⩾ 1) terms in (16c):

A′
n(x) = 2xAn(x) + An−1(x) . (16f)

d. Combine the two recursion relations and obtain a differential equation satisfied by An(x).[7 pt]

Solution

From (15c) it follows, by shifting n 7→ n−1 and solving for An−1(x), that An−1(x) = n
x
An(x).

Substituting this into (16f), we obtain:

A′
n(x) = 2xAn(x) +

n

x
An(x) i .e. xA′

n(x)− (2x2 + n)An(x) = 0. (17)

This is the required differential equation. For this simple case, it turned out to be a 1st order

equation; typically, this is not the case.

e. Solve the differential equation from part d, and compare with your result from part a.[10 pt]

Solution

The equation (17) is in fact easy to solve:

xA′
n(x) = (2x2 + n)An(x) ⇒ dAn(x)

An(x)
=

(
2x+

n

x

)
dx, n ⩾ 1, (18)

which we integrate straightforwardly to obtain:

ln
(
An(x)

)
= x2 + n ln(x) + ln(C) ⇒ An(x) = C ex

2+n ln(x) = C ex
2

xn, n ⩾ 1. (19)

In fact, the n → 0 “limit” of this reproduces the A0(x) solution (16e). Nothing would be remiss

if it did not; the two branches of the differential equations, the special case (16d) and the generic

(n ⩾ 1) cases (18), jointly determine all the coefficient functions An(x), n ⩾ 0. The fact that we

can even easily solve these equations is a consequence of the simple generating function, and it does

not happen in general.

Comparing (19) with (14) above, we see that the choice of the normalization constant Cn = 1
n!
—

and so, in fact, C0 = a0 from (16e)—makes the two solutions perfectly equal. Again, it does not

typically happen that we can so completely determine the coefficient functions An(x) so easily.

3. The vertical displacement h(ρ, ϕ, t) of a circular drumhead of radius a satisfies the wave equation

1

ρ

∂

∂ρ

(
ρ
∂h

∂ρ

)
+

1

ρ2
∂2h

∂ϕ2
− 1

v2
∂2h

∂t2
= 0. (20)

a. Writing h(ρ, ϕ, t) = P (ρ)Φ(ϕ)T (t), separate this partial differential equation into a coupled[15 pt]

system of three ordinary differential equations, one for each of P (ρ), Φ(ϕ) and T (t).
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Solution

Substituting the expected form h(ρ, ϕ, t) = P (ρ)Φ(ϕ)T (t) directly in the equation and dividing

through by h(ρ, ϕ, t) = P (ρ)Φ(ϕ)T (t), we have

1

ρP (ρ)

∂

∂ρ

(
ρ
∂P (ρ)

∂ρ

)
+

1

ρ2Φ(ϕ)

∂2Φ(ϕ)

∂ϕ2
− 1

v2 T (t)

∂2T (t)

∂t2
= 0. (21)

Rearranging, we have

1

ρP (ρ)

∂

∂ρ

(
ρ
∂P (ρ)

∂ρ

)
+

1

ρ2Φ(ϕ)

∂2Φ(ϕ)

∂ϕ2︸ ︷︷ ︸
manifestly t-independent

=
1

v2 T (t)

∂2T (t)

∂t2︸ ︷︷ ︸
manifestly ρ, ϕ-independent

. (22)

The left-hand side quantity must be equal to the right-hand side quantity, which is a quantity that

is independent of t (owing to the left-hand side) and also ρ and ϕ (owing to the right-hand side).

Therefore, this quantity can depend on none of these three independent variables and so must in

fact be a constant; call it −K2.

Equating the right-hand side of (22) with −K2 produces

1

v2 T (t)

∂2T (t)

∂t2
= −K2 ⇒ ∂2T (t)

∂t2
+ (vK)2T (t) = 0. (23)

Equating the left-hand side of (22) with −K2 produces:

1

ρP (ρ)

∂

∂ρ

(
ρ
∂P (ρ)

∂ρ

)
+

1

ρ2Φ(ϕ)

∂2Φ(ϕ)

∂ϕ2
= −K2,

i .e.
ρ

P (ρ)

∂

∂ρ

(
ρ
∂P (ρ)

∂ρ

)
+ ρ2K2︸ ︷︷ ︸

manifestly ϕ, t-independent

= − 1

Φ(ϕ)

∂2Φ(ϕ)

∂ϕ2︸ ︷︷ ︸
manifestly ρ, t-independent

. (24)

Again, the left-hand side quantity must be equal to the right-hand side quantity, which is a quantity

that is independent of ϕ and t (owing to the left-hand side) and also ρ and t (owing to the right-

hand side). Therefore, this quantity can depend on none of these three independent variables and

so must in fact be a constant; call it M2.

Equating—separately—the left-hand side and the right-hand side of (24) with M2 produces

two separate ordinary differential equations,

ρ

P (ρ)

∂

∂ρ

(
ρ
∂P (ρ)

∂ρ

)
+ ρ2K2 = M2 , (25a)

− 1

Φ(ϕ)

∂2Φ(ϕ)

∂ϕ2
= M2 . (25b)

Rearranging the terms in these equations and listing them together with (23), we obtain:

ρ2
∂2P (ρ)

∂ρ2
+ ρ

∂P (ρ)

∂ρ
+
[
(Kρ)2 −M2

]
P (ρ) = 0, (26a)
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∂2Φ(ϕ)

∂ϕ2
+M2Φ(ϕ) = 0, (26b)

∂2T (t)

∂t2
+ (vK)2T (t) = 0. (26c)

b. Using Φ(ϕ)= eimϕ and T (t)= eiωt, determine the general solution for P (ρ) such that it satisfies[10 pt]

the obvious boundary condition, h(a, ϕ, t) = 0: the drumhead is clamped down at the rim.

Solution

Substituting Φ(ϕ)= eimϕ in (26b), we see that M = m, and substituting T (t)= eiωt in (26c), we see

that vK = ω, i.e., K = ω
v
. Since (26a) is the Bessel equation, it is solved by the linear combination

of the Bessel function Jm(Kρ) and the Neumann function1 Nm(Kρ).

Incidentally, even without completing the separation of variables as done in the previous part,

substituting Φ(ϕ)= eimϕ and T (t)= eiωt, i.e., h(ρ, ϕ, t) = P (ρ) eimϕ eiωt into (20) produces

0 =
1

ρ

∂

∂ρ

(
ρ
∂P (ρ)

∂ρ

)
eimϕ eiωt + P (ρ)

1

ρ2
∂2eimϕ

∂ϕ2
eiωt − P (ρ) eimϕ 1

v2
∂2eiωt

∂t2
, (27)

=
1

ρ

∂

∂ρ

(
ρ
∂P (ρ)

∂ρ

)
eimϕ eiωt + P (ρ)

(
−m2

ρ2
eimϕ

)
eiωt − P (ρ) eimϕ 1

v2

(
−ω2eiωt

)
, (28)

=
1

ρ2

{
ρ
∂

∂ρ

(
ρ
∂P (ρ)

∂ρ

)
−m2P (ρ) +

(ω
v
ρ
)2

P (ρ)

}
eimϕ eiωt. (29)

Since neither eimϕ nor eiωt vanishes for all ϕ, t, the quantity in the braces must vanish, which is

identical to (26a) upon identifying M =m and K =ω/v.

As pointed out in class, lim
ρ→0

Nm(Kρ) = ∞, which is impossible in representing the (obviously

finite) vertical displacement of the drumhead. Therefore, the ρ-factor is reduced to the Bessel

function Jm(Kρ). In addition, other than serving to separate the partial differential equation (20)

into the system (26) of ordinary differential equations, there was—initially—no restriction on the

values of K and M . In fact, even the signs of −K2 in (23) and +M2 in (25) were chosen “for

subsequent convenience”—so that the equations in the system (26) would turn out more easily

recognizable.

The general solution therefore has to be formed as a linear combination of the solutions obtained

with various permissible values of M = m and K = ω
v
:

h(ρ, ϕ, t) =
∑
K,m

cK,m Jm(Kρ) eimϕ eiωt, (30)

except that we have not yet determined the values over which K and m are to be summed.

m: Picking any point on the drumhead, h(ρ, ϕ, t) represents its vertical displacement. Therefore,

h(ρ, ϕ+2π, t) must represent the same value, implying that eimϕ = eim(ϕ+2π) = eimϕe2mπi.

That is, m must be integers.

1Arfken, Webber and Harris denote this same function Ym(Kρ).
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K: The coefficient in the argument of Jm(Kρ) is to be determined so that h(a, ϕ, t) = 0: there is

no displacement at the rim of the drum, where the drumhead is clamped down. This enforces

Jm(Ka) = 0, which implies that for each possible choice of K, Ka must equal a zero of the

mth Bessel function. As discussed in class, the zeros of the Bessel function are not integral

multiples of any particular unit, but can be enumerated and are tabulated [1, Table 14.1];

write αmi for the ith zero of Jm(x). We thus set Ka = αm,i and we sum over all permissible

values of K by summing over i, which enumerate the requisite zero-locations.

Recalling that K = ω
v
, so ω = vK, and that v is the speed of sound in the given drumhead (and so

a fixed constant), we have:

h(ρ, ϕ, t) =
∞∑

m=−∞

∞∑
i=1

ci,m Jm

(
αm,i

ρ

a

)
eimϕ eiωm,it, ωm,i =

v
a
αm,i, (31)

c. Using Table 14.1, compute the five lowest values of the frequency ω and show them not to[5 pt]

be integral multiples of a unit: this is why drums generally do not produce tones of well-defined

pitch.

Solution

From (31), the frequencies ωm,i supported by the drumhead are v
a
-multiples of the zeros of the Bessel

functions. From [1, Table 14.1], the lowest-valued five (limited to five significant figures) are:

α0,1 = 2.4048, α1,1 = 3.8317, α2,1 = 5.1356, α0,2 = 5.5201, α3,1 = 6.3802 (32)

The lowest five frequencies are then v
a
-multiples of these numbers, and are clearly not integral

multiples of a fixed unit. The limited decimal expansion of course does not prove this, but is

nevertheless quite manifest from the listing [1, Table 14.1]. For what it is worth, Mathematica can

produce each (finitely-positioned) zero of each (finite-index) Bessel function to any desired number

of decimals; here are the above numbers to 50 significant figures (a frivolous show-off):

α0,1 = 2.404 825 557 695 772 768 621 631 879 326 454 643 124 244 909 146 0 . . . , (33a)

α1,1 = 3.831 705 970 207 512 315 614 435 886 308 160 766 564 545 274 287 8 . . . , (33b)

α2,1 = 5.135 622 301 840 682 556 301 401 690 137 765 456 973 772 347 500 5 . . . , (33c)

α0,2 = 5.520 078 110 286 310 649 596 604 112 813 027 425 221 865 478 782 9 . . . , (33d)

α3,1 = 6.380 161 895 923 983 506 236 614 641 942 703 305 326 303 691 903 1 . . . (33e)

Also, nothing in this problem determines the coefficients ci,m; they could be determined from an

initial condition, such as stating that drumhead is initially displaced to a specific shape (h(ρ, ϕ, 0)
!
=

H(ρ, ϕ), say), or that it receives an initial change in the displacement (
[
∂h
∂t

]
t=0

!
= V (ρ, ϕ), say). But,

that’s for another problem.

4. For any function F (θ, ϕ) =
∑

ℓ,m a m
ℓ Y m

ℓ (θ, ϕ),

a. prove that[5 pt] ∫ π

0

sin(θ) dθ

∫ 2π

0

dϕ
∣∣F (θ, ϕ)

∣∣2 = ∑
ℓ,m

|aℓ,m|2. (34)

9



Solution

Substituting straightforwardly,∫ π

0

sin(θ) dθ

∫ 2π

0

dϕ
∣∣F (θ, ϕ)

∣∣2 = ∫ π

0

sin(θ) dθ

∫ 2π

0

dϕ
∣∣∣∑
ℓ,m

a m
ℓ Y m

ℓ (θ, ϕ)
∣∣∣2,

=

∫ π

0

sin(θ) dθ

∫ 2π

0

dϕ
[∑

ℓ,m

a m
ℓ Y m

ℓ (θ, ϕ)
]∗[∑

λ,µ

a µ
λ Y µ

λ (θ, ϕ)
]
,

=
∑

ℓ,λ,m,µ

(a m
ℓ )∗a µ

λ

∫ π

0

sin(θ) dθ

∫ 2π

0

dϕ
[
Y m
ℓ (θ, ϕ)

]∗
Y µ
λ (θ, ϕ),

=
∑

ℓ,λ,m,µ

(a m
ℓ )∗a µ

λ δℓ,λ δm,µ =
∑
ℓ,m

(a m
ℓ )∗a m

ℓ =
∑
ℓ,m

∣∣a m
ℓ

∣∣2. ✓ (35)

b. Rewriting the integrand in terms of Y m
ℓ (θ, ϕ) and using (34), calculate[10 pt] ∫ π

0

dθ

∫ 2π

0

dϕ sin3(θ)
[
sin2(θ)

(
5
√
3 cos(ϕ)−

√
5 cos(3ϕ)

)
− 4

√
3 cos(ϕ)

]2
. (36)

Hint: rewrite the integrand in (37) akin to that in (34), using that cos(x) = (eix + e−ix)/2; expand the resulting expression
for F (θ, ϕ) and identify terms with the Y m

ℓ (θ, ϕ) starting with the highest powers of sin(θ) and/or cos(θ).

Solution

Before we follow the hint, we note that a factor of sin(θ) needs to be moved into the integration

measure, while the remaining sin2(θ) may be moved inside the square brackets, leaving us with the

integral ∫ π

0

sin(θ) dθ

∫ 2π

0

dϕ
[
sin3(θ)

(
5
√
3 cos(ϕ)−

√
5 cos(3ϕ)

)
− 4

√
3 sin(θ) cos(ϕ)

]2
, (37)

so that

F (θ, ϕ) = sin3(θ)
(
5
√
3 cos(ϕ)−

√
5 cos(3ϕ)

)
− 4

√
3 sin(θ) cos(ϕ) (38)

is a real function and the desired integral in fact is exactly of the form (35). It remains then

to express F (θ, ϕ) as a concrete linear combination of spherical harmonics, i.e., to determine the

coefficients in the so-called Laplace expansion, F (θ, ϕ) =
∑

ℓ,m a m
ℓ Y m

ℓ (θ, ϕ). With these coefficients,

a m
ℓ ascertained, the value of the integral is

∑
ℓ,m |a m

ℓ |2.

We proceed following the hint,

F (θ, ϕ) = 1
2
sin3(θ)

(
5
√
3(eϕ + e−ϕ)−

√
5(e3iϕ + e−3iϕ)

)
− 2

√
3 sin(θ)(eiϕ + e−iϕ),

= 5
√
3

2
sin3(θ)eϕ −

√
5
2
sin3(θ)e3iϕ − 2

√
3 sin(θ)eiϕ︸ ︷︷ ︸

= f(θ,ϕ)

+ complex conjugate, f ∗(θ, ϕ). (39)

Reordering a little, we have:

f(θ, ϕ) = −
√
5
2
sin3(θ)e3iϕ + 5

√
3

2
sin3(θ)eϕ − 2

√
3 sin(θ)eiϕ. (40)

The leading term, sin3(θ) e3iϕ, is unambiguously identified as being equal to:

sin3(θ) e3iϕ = −
√

64π

35
Y 3
3 (θ, ϕ) . (41)
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The next term, sin3(θ) eiϕ, does not appear in the given listing of the spherical harmonics as-is.

However, we note that eiϕ does appear within Y 1
3 (θ, ϕ) and Y 1

1 (θ, ϕ), the former of which has sin(θ)

multiplied by a quadratic polynomial in cos(θ). We therefore write:

f(θ, ϕ) = −
√
5

2

[
−
√

64π

35
Y 3
3 (θ, ϕ)

]
+

5
√
3

2

((
1− cos2(θ)

)
sin(θ)

)
eϕ − 2

√
3 sin(θ)eiϕ,

=

√
16π

7
Y 3
3 (θ, ϕ)−

5
√
3

2
cos2(θ) sin(θ) eϕ +

√
3

2
sin(θ) eϕ. (42)

Consulting the listing of spherical harmonics again, we see that the function cos2(θ) sin(θ) eiϕ appears

as one of the two terms in Y 1
1 (θ, ϕ) while its other term involves sin(θ) eiϕ—which also appears in

Y 1
1 (θ, ϕ). Thus, we may write:

Y 1
1 (θ, ϕ) = −

√
3

8π
sin(θ) eiϕ ⇒ sin(θ) eiϕ = −

√
8π

3
Y 1
1 (θ, ϕ) , (43)

and thus

Y 1
3 (θ, ϕ) = −

√
7

48π

(15
2

cos2(θ)− 3

2

)
sin(θ) eiϕ = −

√
525

64π
cos2(θ) sin(θ) eiϕ +

√
21

64π
sin(θ) eiϕ,

= −
√

525

64π
cos2(θ) sin(θ) eiϕ +

√
21

64π

(
−
√

8π

3
Y 1
1 (θ, ϕ)

)
,

= −
√

525

64π
cos2(θ) sin(θ) eiϕ −

√
7

8
Y 1
1 (θ, ϕ). (44)

Rearranging terms, we have:

− cos2(θ) sin(θ) eiϕ =

√
64π

525
Y 1
3 (θ, ϕ) +

√
8π

75
Y 1
1 (θ, ϕ) (45)

Substituting these into (42), we have

f(θ, ϕ) =

√
16π

7
Y 3
3 (θ, ϕ) +

5
√
3

2

[√64π

525
Y 1
3 (θ, ϕ) +

√
8π

75
Y 1
1 (θ, ϕ)

]
+

√
3

2

[
−
√

8π

3
Y 1
1 (θ, ϕ)

]
,

=

√
16π

7
Y 3
3 (θ, ϕ) +

√
16π

7
Y 1
3 (θ, ϕ) +

√
2π Y 1

1 (θ, ϕ)−
√
2π Y 1

1 (θ, ϕ),

=

√
16π

7

(
Y 3
3 (θ, ϕ) + Y 1

3 (θ, ϕ)
)
. (46)

Therefore,

F (θ, ϕ) =

√
16π

7

(
Y 3
3 (θ, ϕ) +

(
Y 3
3 (θ, ϕ)

)∗
+ Y 1

3 (θ, ϕ) +
(
Y 1
3 (θ, ϕ)

)∗)
,

[
F (θ, ϕ)

]2
=

16π

7

(
2
∣∣Y 3

3 (θ, ϕ)
∣∣2 + 2

∣∣Y 1
3 (θ, ϕ)

∣∣2 + mixed terms
)
,

and ∫ π

0

sin(θ) dθ

∫ 2π

0

dϕ
[
sin3(θ)

(
5
√
3 cos(ϕ)−

√
5 cos(3ϕ)

)
− 4

√
3 sin(θ) cos(ϕ)

]2
= 4 · 16π

7
=

64π

7
. (47)
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The procedure (37)–(47) may indeed be comparable to a direct evaluation of the integral (37).

However, if several such integrals are required, one first computes those results of the type (41), (43)

and (45) as will be needed in the considered integrals, re-expresses all desired integrals in terms of

the Y m
ℓ (θ, ϕ)’s, and then uses Parseval’s identity (35).
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