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Don't Panic !

Mathematical Methods I
Midterm 1: 2010, Oct. 4. Solutions
The solutions are presented here with much more detail than was expected of the students’ answers in the exam.
Hopefully, this will provide additional information and help understanding the material more fully.

1. Given a vector ~A = sin(ϕ)êz, so specified in cylindrical coordinates (hρ = 1 = hz and hϕ = ρ),

a. Calculate ~∇· ~A. [=5pt]

Since ~A = sin(ϕ)êz, we have that Aρ = 0 = Aϕ and that Az = sin(ϕ). Then, in cylindrical

coordinates,

~∇· ~A =
1

ρ

[∂(0·ρ·1)

∂ρ
+
∂(1·0·1)

∂ρ
+
∂
(
1·ρ· sin(ϕ)

)
∂z

]
= 0 . (1)

b. Calculate ~∇× ~A. [=5pt]

Similarly,

~∇× ~A =
1

ρ

∣∣∣∣∣∣∣
êρ ρ êϕ rêz
∂
∂ρ

∂
∂ϕ

∂
∂z

1·0 ρ·0 1· sin(ϕ)

∣∣∣∣∣∣∣ =
1

ρ

[
êρ
∂

∂ϕ
sin(ϕ)− ρêϕ

∂

∂ρ
sin(ϕ) + êz 0

]
, (2)

=
1

ρ
cos(ϕ) êρ. (3)

c. Calculate the three components of ~∇2 ~A. [=20pt]

We’ll present the calculation both using the identity ~∇2 ~A = ~∇(~∇· ~A)− ~∇×(~∇× ~A) and directly,

using the formulae in the text. Using the former identity simplifies using the above results:

~∇2 ~A = ~∇(0)− ~∇×
(1

ρ
cos(ϕ) êρ

)
,

= −1

ρ

∣∣∣∣∣∣∣
êρ ρ êϕ êz
∂
∂ρ

∂
∂ϕ

∂
∂z(

1
ρ

cos(ϕ)
)

0 0

∣∣∣∣∣∣∣ = −1

ρ

[
− ρêϕ

(
− ∂

∂z

1

ρ
cos(ϕ)

)
+ êz

(
− ∂

∂ϕ

1

ρ
cos(ϕ)

)]
,

= −1

ρ

[
êz
[
− 1

ρ

(
− sin(ϕ)

)]]
= − 1

ρ
sin(ϕ) êz. (4)

In turn, using Arfken’s Eqs. (2.37) and that Aρ = 0 = Aϕ and Az = sin(ϕ),

~∇2 ~A|ρ = 0 , (5)

~∇2 ~A|ϕ = 0 , (6)

~∇2 ~A|z =
(
~∇2 sin(ϕ)

)
=
[1

ρ

∂

∂ρ
ρ
∂

∂ρ
+

1

ρ2
∂2

∂ϕ2
+

∂2

∂z2

]
sin(ϕ) = − 1

ρ2
sin(ϕ) , (7)

which is in agreement with (4).



2. Calculate I :=
∮
S

d~σ ×
(
ẑ(x2 + y2)n

)
for n ∈ Z, where S is a pill-box of radius R and height H,

body-centered at the origin:

a. Performing the surface integral directly: [=10pt]

There are three surfaces to the pill-box, the flat disc-like surfaces of radius ρ ∈ [0, R] and

positioned at heights z = ±1
2
H and with normals ±ẑ, respectively, and the cylinder with radius

ρ = R, extending z ∈ [−1
2
H,+1

2
H], and with normal ρ̂, we have:

I =
( ∫ R

0

ρ dρ

∫ 2π

0

dφ ẑ
)
×(ẑ︸ ︷︷ ︸
=0

ρ2n) +
( ∫ R

0

ρ dρ

∫ 2π

0

dφ (−ẑ)
)
×(ẑ︸ ︷︷ ︸

=0

ρ2n)

+

[( ∫ H/2

−H/2
dz

∫ 2π

0

dφ ρ̂
)
×(ẑ︸ ︷︷ ︸

=−ϕ̂

ρ2n)

]
ρ=R, on the side

,

= H R2n

∫ 2π

0

dφ ϕ̂ = 0, because ϕ̂ rotates uniformly around the circle and contribu-
tions from the opposite sides cancel each other out. (8)

b. Upon applying an appropriate integration/derivative identity: [=10pt]

Using Gauss’s theorem, we have that

I :=

∮
S

d~σ ×
(
ẑ(x2 + y2)n

)
=

∫
V

d3~r ~∇×
(
ẑ ρ2n

)
=

∫
V

d3~r
1

ρ

∣∣∣∣∣∣∣
ρ̂ ρ ϕ̂ ẑ
∂
∂ρ

∂
∂ϕ

∂
∂z

0 0 ρ2n

∣∣∣∣∣∣∣ ,
=

∫ H/2

−H/2
dz

∫ R

0

ρdρ

∫ 2π

0

dϕ
(
− ϕ̂ 2n ρ2n−1

)
= 2nH

∫ R

0

ρ2ndρ

∫ 2π

0

dϕ ϕ̂︸ ︷︷ ︸
=0

, (9)

where the last integral vanishes again because ϕ̂ rotates uniformly around the circle and contribu-

tions from opposite points of the circle precisely cancel.

The unbelieving Student may replace ϕ̂ = cos(ϕ)êy − sin(ϕ)êx and use that êx and êy are

constant: ∫ 2π

0

dϕ
[

cos(ϕ)êy − sin(ϕ)êx
]

= êy

∫ 2π

0

dϕ cos(ϕ)− êx

∫ 2π

0

dϕ sin(ϕ) = 0. (10)

c. Is any value of n exceptional? Explain. [=5pt]

The integrand is ill-defined when 2n− 1 < 0, i.e., when n < 1
2
.

3. Consider a (generalized) coordinate system (ξ, η, ζ) which is related to the Cartesian system

(x, y, z) through the relations

x = ξ η, y = 1
2
(η2 − ξ2), z = ζ .
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a. Calculate the (inverse) transformation matrix J = ∂(x,y,z)
∂(ξ,η,ζ)

. [=10pt]

The transformation matrix is

J =


∂x
∂ξ

∂x
∂η

∂x
∂ζ

∂y
∂ξ

∂y
∂η

∂y
∂ζ

∂z
∂ξ

∂z
∂η

∂z
∂ζ

 =

 η ξ 0

−ξ η 0

0 0 1

 (11)

b. Calculate the metric, gij(ξ, η, ζ), for the (ξ, η, ζ) coordinate system. [=10pt]

The metric is defined as

gjk :=
3∑
i=1

∂xi

∂qj
∂xi

∂qk
=

∂x

∂qj
∂x

∂qk
+
∂y

∂qj
∂y

∂qk
+
∂z

∂qj
∂z

∂qk
,

gξξ =
∂x

∂ξ

∂x

∂ξ
+
∂y

∂ξ

∂y

∂ξ
+
∂z

∂ξ

∂z

∂ξ
= (η)(η) + (−ξ)(−ξ) + 0·0 = ξ2 + η2,

gξη =
∂x

∂ξ

∂x

∂η
+
∂y

∂ξ

∂y

∂η
+
∂z

∂ξ

∂z

∂η
= (η)(ξ) + (−ξ)(η) + 0·0 = 0,

gξζ =
∂x

∂ξ

∂x

∂ζ
+
∂y

∂ξ

∂y

∂ζ
+
∂z

∂ξ

∂z

∂ζ
= (η)(0) + (−ξ)(0) + 0·1 = 0,

and so on. The end result is:

[
gij
]

=

(ξ2+η2) 0 0

0 (ξ2 + η2) 0

0 0 1

 = JT J. (12)

c. Determine if the (ξ, η, ζ) system is orthogonal or not. Explain. [=10pt]

The coordinate system (ξ, η, ζ) is orthogonal since gjk(ξ, η, ζ) is diagonal.

d. State the relationship between J and the matrix [gij(ξ, η, ζ)]. [=5pt]

As used above, [ gjk(ξ, η, ζ) ] = JT J. To prove this, just multiply the defining expression of J,

given in Eq. (11), with its transpose—and realize that the result equals (12).

4. For i, j = 1, 2, 3, Ai, B
j are components of a covariant and a contravariant vector, and Ckl are

the components of a type-(2, 0) tensor.

These statements amount to the following transformation rules with respect to a change of variables

xi → ξi(x):

Ai(x) 7→ A′i(ξ) =
∂xj

∂ξi
Aj(x), Bi(x) 7→ B′i(ξ) =

∂ξi

∂xj
Bj(x),

Cij(x) 7→ C ′ij(ξ) =
∂ξi

∂xk
∂ξj

∂x`
Ck`(x).

(13)

a. Determine the (tensorial) transformation properties of (AiC
ijBk). [=5pt]

Using Eqs. (13)—and ensuring that each dummy index is written as a different letter, we obtain:

(A′iC
′ijB′k) =

(∂x`
∂ξi

A`

)( ∂ξi
∂xm

∂ξj

∂xn
Cmn

)(∂ξk
∂xp

Bp
)
,
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=
(∂x`
∂ξi

∂ξi

∂xm

) ∂ξj
∂xn

∂ξk

∂xp
(A`C

mnBp),

= δ`m
∂ξj

∂xn
∂ξk

∂xp
(A`C

mnBp),

=
∂ξj

∂xn
∂ξk

∂xp
(A`C

`nBp), rank-2, type-(2, 0) tensor. (14)

b. Determine the (tensorial) transformation properties of εijkAi
(
∂Bm

∂xj

)
with respect to general co-

ordinate changes. [=5pt]

Besides using Eqs. (13), we will also need to figure out the transformation properties of εijk. To

this end, we note that the determinant of the transformation and its inverse is:

J := det[J] = det
[∂x
∂ξ

]
= 1

3!
ε̃ ijkε`mn

∂x`

∂ξi
∂xm

∂ξj
∂xn

∂ξk
, (15)

1

J
:= det[J−1] = det

[∂ξ
∂x

]
= 1

3!
εijkε̃`mn

∂ξ`

∂xi
∂ξm

∂xj
∂ξn

∂xk
, (16)

from which it follows that

ε̃ `mn = J εijk
∂ξ`

∂xi
∂ξm

∂xj
∂ξn

∂xk
, (17)

which shows that εijk transforms almost like a rank-3, type-(3, 0) tensor: the only difference is the

pre-factor J = det[J]; εijk is not a tensor, but a rank-3, type-(3, 0) tensor density of weight 1—since

J occurs to the power 1 in the transformation rule.

Using these, we obtain:

ε̃ ijkÃi
(∂B̃m

∂ξj
)

=
(
J ε`np

∂ξi

∂x`
∂ξj

∂xn
∂ξk

∂xp

)(∂xr
∂ξi

Ar

)(∂xs
∂ξj

∂

∂xs

(∂ξm
∂xt

Bt
))

,

= J ε`np
∂ξk

∂xp

( ∂ξi
∂x`

∂xr

∂ξi

)( ∂ξj
∂xn

∂xs

∂ξj

)
Ar

(
∂ξm

∂xt
∂Bt

∂xs
+

∂2ξm

∂xs∂xt
Bt

)
,

= J ε`np
∂ξk

∂xp
δr` δ

s
nAr

∂ξm

∂xt
∂Bt

∂xs
+ J ε`np

∂ξk

∂xp
δr` δ

s
nAr

∂2ξm

∂xs∂xt
Bt,

= J
∂ξk

∂xp
∂ξm

∂xt

(
ε`npA`

∂Bt

∂xn

)
+ J

∂ξk

∂xp

(
ε`npA`

∂2ξm

∂xn∂xt
Bt
)
. (18)

Owing to this second term, the quantity εijkAi
(
∂Bm

∂xj

)
is not a tensor, and not even a tensor density

with respect to general coordinate transformations! However, if the transformation xi 7→ ξi(x) is

linear , then ∂ξ
∂x

is a matrix of constant elements, and ∂2ξi

∂xj∂xk
= 0, so that this second term vanishes.

Thus, with respect to general coordinate changes,

Xkm := εijkAi
(∂Bm

∂xj
)

(19)

is neither a tensor nor even a tensor density. However, with respect to linear coordinate changes, it is

a scalar density : it transforms as a rank-0, type-(0, 0) tensor density of weight-1 (that’s weight-one,

not “weight minus one”).

Note that the tensorial nature of a quantity inextricably depends on the class of transformations

with respect to which the tensorial nature is being specified.
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c. Write down two algebraically independent scalars constructed from Ai, B
j and Ckl. [=10pt]

By scalar—and without qualification as to the class of coordinate transformations, we must

mean ‘invariant with respect to general coordinate transformations’. Then, it is not hard to prove,

following the above methods, that

Z := A·B := (AiB
i), and W := A·C·A := (AiC

ij Aj) (20)

are two such quantities. In fact, any quantity of the form ZαW β—for arbitrary α, β—would be

just as invariant. However, all quantities ZαW β are constructed algebraically from Z and W , and

so are not algebraically independent from Z and W . It then follows that Z and W are the only two

algebraically independent scalars constructed from Ai, B
j and Ck`.

d. How many independent components does the set of quantities εijkB
iCj`A` represent? [=10pt]

It is not hard to verify that

Ṽ k := (ε̃ ijkB̃
iC̃ j`Ã`) = J

∂xm

∂ξk
(εijmB

iCj`A`) = J
∂xm

∂ξk
V m. (21)

That is, the quantity V k := (εijkB
iCj`A`) is a contravariant vector density: a rank-1, type-(1, 0)

tensor density of weight-1. It has a single free index, which may take any value from among

` = 1, 2, 31 . Therefore, there are three independent components: V 1,V 2,V 3.

Sturgeon General’s Warning: Tests like this one may look decep-

tively like one of the previous year’s tests. The differences are subtle,

but make it easy to identify the Student who decided to indiscriminately

copy the solution of a past year’s test and so make a fool of themself.

1The fact that the indices can take precisely three distinct values is implied by the use of the rank-3
Levi-Civita symbol, εijk. In general, the number of indices on such a symbol must equal the number of
distinct values which those indices can assume, for a formula such as Eq. (15) to even make sense.
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