Don't Panic! Student: \qquad

Mathematical Methods I

Final: 2010, Nov. 29th.

This is an "open Textbook (Arfken \& Weber), open lecture notes" take-home exam, due 5:00 pm of Monday, 6th Dec. ' ${ }^{10}$. For full credit, show all your work. If you cannot complete one part of a calculation, a clear description of the procedure/method will still earn you partial credit. Neither collaboration nor consultation is allowed, but you may quote - with full reference - any published source for intermediate results that you may use.

1. For $f(\vec{r})$ and $g(\vec{r})$ two analytic functions of their respective arguments, calculate the integrals \qquad

$$
\oint_{S} \mathrm{~d}^{2} \vec{\sigma} \times(\vec{\nabla} f(\vec{r})), \quad \text { and } \quad \oint_{C} \mathrm{~d} \vec{r} \cdot(\vec{r} g(\vec{r}))
$$

where S is the surface of the tetrahedron with vertices at $(0,0,0),(1,0,0),(0,1,0)$ and $(0,0,1)$ in a cartesian coordinate system, and C is the unit circle in the $x-z$ plane centered at the origin.
2. Given are constant and perpendicular electric and a magnetic fields, so $\vec{E} \cdot \vec{B}=0$.
a. Compute $\frac{1}{2} F_{\mu \nu} F^{\mu \nu}$ and $\frac{1}{4} \epsilon^{\mu \nu \rho \sigma} F_{\mu \nu} F_{\rho \sigma}$.
[$=10 \mathrm{pt}$]
b. Determine the velocity for a Lorentz transformation, Eq. (4.160)-(4.161), such that in the transformed system $\vec{B}^{\prime}=0$.
c. Determine the condition on $F_{\mu \nu} F^{\mu \nu}$ that prevents your solution to part \boldsymbol{b} from contradicting special relativity (that no physical system may move faster than the speed of light in vacuum). [=5pt]
3. Consider the matrix $\mathbb{A}=\left[\begin{array}{lll}4 & 2 & 0 \\ 2 & 0 & 1 \\ 0 & 1 & a\end{array}\right]$.
\boldsymbol{a}. Determine a so that at least one eigenvalue of \mathbb{A} vanishes. (Should be an integer.) [=5pt]
Hint: Which easily calculable numerical characteristic of the matrix \mathbb{A} is a product of the eigenvalues?
\boldsymbol{b}. Compute all eigenvalues of \mathbb{A} for the a you found in part \boldsymbol{a}.
$[=10 \mathrm{pt}]$
c. Compute all normalized eigenvectors of \mathbb{A} for that same a.
[$=15 \mathrm{pt}]$
d. Compute $\sqrt[3]{\mathbb{A}}$, i.e., find a matrix \mathbb{M}, such that $\mathbb{M}^{3}=\mathbb{A}$.
[$=15 \mathrm{pt}$]
4. Determine the radius of convergence of $\sum_{k=0}^{\infty} \frac{\Gamma(n k) x^{k}}{\Gamma(k) \Gamma\left(k+\frac{1}{3}\right) \Gamma\left(k+\frac{2}{3}\right)}$, depending on the positive integer n, or at least for the case $n=3$.
5. Evaluate $\int_{-\infty}^{\infty} \frac{\mathrm{d} x e^{-i \alpha x}}{1+x^{3}}$ and $\int_{0}^{\infty} \frac{\mathrm{d} x x^{4}}{1-x^{5}}$ using contour integration, with $\alpha>0$.

Hint: First find the poles of the integrand; then close the integral in the upper or lower complex plane -wherever the integrand decays exponentially; if there are poles along the contour, determine the detour; evaluate the closed contour integral by summing the enclosed residues; finally, sort out the value of the above integrals.

