Judicious Changes of Variables

1. Some Known Examples

Several differential equations can be solved rather easily upon a judicious change of variables. For example, consider the d-dimensional Bessel equation:

$$
\begin{equation*}
\frac{1}{r^{d-1}} \frac{\mathrm{~d}}{\mathrm{~d} r}\left(r^{d-1} \frac{\mathrm{~d} R}{\mathrm{~d} r}\right)+\left(k^{2}-\frac{Q}{r^{2}}\right) R=0 \tag{1.1}
\end{equation*}
$$

where $R=R(r)$ is the sought-for function or r, and k, Q certain suitable constants. This equation occurs, for example, upon separating the d-dimensional Helmholz equation, i.e., the d-dimensional analogue of $\left[\vec{\nabla}^{2}-k^{2}\right] \psi=0$ (for the analysis of the latter one, see chapter 2 of Arfken [1]).

Straightforward differentiation of the above equation yields

$$
\begin{equation*}
\frac{\mathrm{d}^{2} R}{\mathrm{~d} r^{2}}+\frac{d-1}{r} \frac{\mathrm{~d} R}{\mathrm{~d} r}+\left(k^{2}-\frac{Q}{r^{2}}\right) R=0 . \tag{1.2}
\end{equation*}
$$

Consider now a change of the dependent function: $R(r)=r^{\alpha} P(r)$, whereby

$$
\begin{aligned}
\frac{\mathrm{d} R}{\mathrm{~d} r} & =r^{\alpha}\left(\frac{\mathrm{d} P}{\mathrm{~d} r}+\frac{\alpha}{r} P\right) \\
\frac{\mathrm{d}^{2} R}{\mathrm{~d} r^{2}} & =r^{\alpha}\left(\frac{\mathrm{d}^{2} P}{\mathrm{~d} r^{2}}+\frac{2 \alpha}{r} \frac{\mathrm{~d} P}{\mathrm{~d} r}+\frac{\alpha(\alpha-1)}{r^{2}} P\right),
\end{aligned}
$$

Substituting this into Eq. (1.2), and upon some straightforward simplifications, we obtain

$$
\begin{equation*}
r^{\alpha}\left[\frac{\mathrm{d}^{2} P}{\mathrm{~d} r^{2}}+\frac{2 \alpha+d-1}{r} \frac{\mathrm{~d} P}{\mathrm{~d} r}+\left(k^{2}-\frac{Q-\alpha(d+a-2)}{r^{2}}\right) P\right]=0 \tag{1.4}
\end{equation*}
$$

Now, r^{α} will vanish only for $r=0$ if $\alpha>0$, and for $r=\infty$ if $\alpha<0$, so we may drop it and examine the remaining differential equation for $P(r)$:

$$
\begin{equation*}
\frac{\mathrm{d}^{2} P}{\mathrm{~d} r^{2}}+\frac{2 \alpha+d-1}{r} \frac{\mathrm{~d} P}{\mathrm{~d} r}+\left(k^{2}-\frac{Q-\alpha(d+a-2)}{r^{2}}\right) P=0 . \tag{1.5}
\end{equation*}
$$

1.1. The very special cases

We notice that the equation (1.5) simplifies when $\alpha=-\frac{d-1}{2}$, in which case the first order derivative drops out:

$$
\begin{equation*}
\frac{\mathrm{d}^{2} P}{\mathrm{~d} r^{2}}+\left(k^{2}-\frac{4 Q+(d-1)(d-3)}{4 r^{2}}\right) P=0 \tag{1.6}
\end{equation*}
$$

Finally, we find the extremely simple case where also $Q=-(d-1)(d-3) / 4$, and when

$$
\begin{equation*}
\frac{\mathrm{d}^{2} P}{\mathrm{~d} r^{2}}+k^{2} P=0 \tag{1.7}
\end{equation*}
$$

This is a simple differential equation with constant coefficients, and is solved by $P(r)=$ $A \sin (k r+\delta)$, where A, δ are two undetermined constants. Going back to Eq. (1.1), we find that its special case

$$
\begin{equation*}
\frac{1}{r^{d-1}} \frac{\mathrm{~d}}{\mathrm{~d} r}\left(r^{d-1} \frac{\mathrm{~d} R}{\mathrm{~d} r}\right)+\left(k^{2}+\frac{(d-1)(d-3)}{4 r^{2}}\right) R=0 \tag{1.8}
\end{equation*}
$$

are solved by $R(r)=A r^{-\frac{(d-1)}{2}} \sin (k r+\delta)$, which does look like a considerable feat.
On the other hand, when $\alpha=1-\frac{d}{2}$, the equation (1.5) simplifies into:

$$
\begin{equation*}
\frac{\mathrm{d}^{2} P}{\mathrm{~d} r^{2}}+\frac{1}{r} \frac{\mathrm{~d} P}{\mathrm{~d} r}+\left(k^{2}-\frac{4 Q+(2-d)^{2}}{4 r^{2}}\right) P=0 \tag{1.9}
\end{equation*}
$$

which is solved by $P(r)=A J_{\mu}(k r)+B N_{\mu}(k r)$, where $\mu= \pm \sqrt{Q+\left(\frac{d}{2}-1\right)^{2}}$, and $J_{\mu}(k r)$ and $N_{\mu}(k r)$ are the cylindrical Bessel functions of the first and second kind.

Finally, when $\alpha=-\frac{d-3}{2}$, the equation (1.5) simplifies into:

$$
\begin{equation*}
\frac{\mathrm{d}^{2} P}{\mathrm{~d} r^{2}}+\frac{2}{r} \frac{\mathrm{~d} P}{\mathrm{~d} r}+\left(k^{2}-\frac{4 Q+(d-1)(d-3)}{4 r^{2}}\right) P=0, \tag{1.10}
\end{equation*}
$$

which is solved by $P(r)=A j_{\mu}(k r)+B n_{\mu}(k r)$, where $\mu= \pm \sqrt{Q+(d-1)(d-3) / 4}$, and $j_{\mu}(k r)$ and $n_{\mu}(k r)$ are the spherical Bessel functions of the first and second kind.

There is another relatively simple case, which can be seen straight from the original equation (1.1). When $k=0$, the equation becomes homogeneous. That is, should we replace $r \rightarrow \lambda r$ for some non-zero constant λ and leave everything else the same, the equation stays the same. More precisely, both terms in Eq (1.1) pick up a multiplicative constant λ^{-2}. This however can be factored out, and being non-zero, can be cancelled. For a homogeneous equation, it is consistent to look for $R(r)=r^{\alpha}$; indeed, each term in the equation now scales as $\lambda^{\alpha-2}$, which again is an overall constant and can easily be cancelled ${ }^{1)}$. Straightforward calculation yields:

$$
\frac{1}{r^{d-1}} \frac{\mathrm{~d}}{\mathrm{~d} r}\left(r^{d-1} \frac{\mathrm{~d} r^{\alpha}}{\mathrm{d} r}\right)-\frac{Q}{r^{2}} r^{\alpha}=0
$$

[^0]\[

$$
\begin{aligned}
\frac{1}{r^{d-1}} \frac{\mathrm{~d}}{\mathrm{~d} r}\left(\alpha r^{\alpha+d-2}\right)-Q r^{\alpha-2} & =0 \\
\frac{\alpha(\alpha+d-2)}{r^{d-1}} r^{\alpha+d-3}-Q r^{\alpha-2} & =0 \\
(\alpha(\alpha+d-2)-Q) r^{\alpha-2} & =0
\end{aligned}
$$
\]

Thus, the exponent α is determined as the solution of

$$
\begin{equation*}
\alpha^{2}+(d-2) \alpha-Q=0 \tag{1.12}
\end{equation*}
$$

that is,

$$
\begin{equation*}
R(r)=r^{\alpha}, \quad \alpha_{ \pm}=\frac{2-d}{2} \pm \sqrt{\frac{(d-2)^{2}}{4}+Q} \tag{1.13}
\end{equation*}
$$

are the two solutions of Eq. (1.1), when $k=0$.

References

[1] G. Arfken: Mathematical Methods for Physicists, (Academic Press, New York, 1985).
[2] F.W. Byron and R.W. Fuller: Mathematics of Classical and Quantum Physics, (Dover, New York, 1969).
[3] J.W. Dettman: Mathematical Methods in Physics and Engineering, (Dover, New York, 1962).
[4] I.S. Gradshteyn and I.M. Ryzhik: Table of Integrals, Series, and Products, (Academic Press, New York, 1980).
[5] N.N. Lebedev: Special Functions \& Their Applications, (Dover, New York, 1972).
[6] J. Mathews and R.L. Walker: Mathematical Methods of Physics, (Addison-Wesley, Redwood City, 1964).
[7] L.A. Segel: Mathematics Applied to Continuum Mechanics, (Dover, New York, 1977).
[8] P.R. Wallace: Mathematical Analysis of Physical Problems, (Dover, New York, 1972).

[^0]: ${ }^{1)}$ Were it not for this homogeneity, looking for $R(r)=r^{\alpha}$ could not possibly work.

