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Judicious Changes of Variables Don't Panic !

1. Some Known Examples

Several differential equations can be solved rather easily upon a judicious change of vari-
ables. For example, consider the d-dimensional Bessel equation:
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)
R = 0 , (1.1)

where R = R(r) is the sought-for function or r, and k,Q certain suitable constants. This
equation occurs, for example, upon separating the d-dimensional Helmholz equation, i.e.,
the d-dimensional analogue of

[
�∇2 − k2

]
ψ = 0 (for the analysis of the latter one, see

chapter 2 of Arfken [1]).

Straightforward differentiation of the above equation yields
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—◦—

Consider now a change of the dependent function: R(r) = rαP (r), whereby
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Substituting this into Eq. (1.2), and upon some straightforward simplifications, we obtain
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= 0 . (1.4)

Now, rα will vanish only for r = 0 if α > 0, and for r = ∞ if α < 0, so we may drop it and
examine the remaining differential equation for P (r):
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1.1. The very special cases

We notice that the equation (1.5) simplifies when α = −d−1
2 , in which case the first order

derivative drops out:
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)
P = 0 . (1.6)

Finally, we find the extremely simple case where also Q = −(d− 1)(d− 3)/4, and when

d2P

dr2
+ k2P = 0 . (1.7)

This is a simple differential equation with constant coefficients, and is solved by P (r) =
A sin(kr + δ), where A, δ are two undetermined constants. Going back to Eq. (1.1), we
find that its special case
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are solved by R(r) = Ar−
(d−1)

2 sin(kr + δ), which does look like a considerable feat.
On the other hand, when α = 1 − d

2 , the equation (1.5) simplifies into:
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P = 0 , (1.9)

which is solved by P (r) = AJµ(kr) + BNµ(kr), where µ = ±
√
Q+ (d

2 − 1)2, and Jµ(kr)
and Nµ(kr) are the cylindrical Bessel functions of the first and second kind.

Finally, when α = −d−3
2 , the equation (1.5) simplifies into:
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+
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)
P = 0 , (1.10)

which is solved by P (r) = Ajµ(kr) + Bnµ(kr), where µ = ±
√
Q+ (d− 1)(d− 3)/4, and

jµ(kr) and nµ(kr) are the spherical Bessel functions of the first and second kind.
—◦—

There is another relatively simple case, which can be seen straight from the original
equation (1.1). When k = 0, the equation becomes homogeneous. That is, should we
replace r → λr for some non-zero constant λ and leave everything else the same, the
equation stays the same. More precisely, both terms in Eq (1.1) pick up a multiplicative
constant λ−2. This however can be factored out, and being non-zero, can be cancelled.
For a homogeneous equation, it is consistent to look for R(r) = rα; indeed, each term
in the equation now scales as λα−2, which again is an overall constant and can easily be
cancelled 1). Straightforward calculation yields:
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rα = 0 ,

1) Were it not for this homogeneity, looking for R(r) = rα could not possibly work.
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1
rd−1

d
dr

(
αrα+d−2

)
−Qrα−2 = 0 ,

α(α+ d− 2)
rd−1

rα+d−3 −Qrα−2 = 0 ,
(
α(α+ d− 2) −Q

)
rα−2 = 0 .

Thus, the exponent α is determined as the solution of

α2 + (d−2)α−Q = 0 , (1.12)

that is,

R(r) = rα, α± =
2−d
2

±
√

(d−2)2

4
+Q , (1.13)

are the two solutions of Eq. (1.1), when k = 0.
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