DECLARATION OF INDEPENDENCE: This articlet is based on many diverse sources in print, lecture and private rumor. Errors are however entirely and completely mine.

1. Some Known Examples

Several differential equations can be solved rather easily upon a judicious change of variables. For example, consider the *d*-dimensional Bessel equation:

$$\frac{1}{r^{d-1}} \frac{\mathrm{d}}{\mathrm{d}r} \left(r^{d-1} \frac{\mathrm{d}R}{\mathrm{d}r} \right) + \left(k^2 - \frac{Q}{r^2} \right) R = 0 , \qquad (1.1)$$

where R = R(r) is the sought-for function or r, and k, Q certain suitable constants. This equation occurs, for example, upon separating the *d*-dimensional Helmholz equation, *i.e.*, the d-dimensional analogue of $[\vec{\nabla}^2 - k^2]\psi = 0$ (for the analysis of the latter one, see chapter 2 of Arfken [1]).

Straightforward differentiation of the above equation yields

$$\frac{\mathrm{d}^2 R}{\mathrm{d}r^2} + \frac{d-1}{r} \frac{\mathrm{d}R}{\mathrm{d}r} + \left(k^2 - \frac{Q}{r^2}\right)R = 0.$$
 (1.2)

Consider now a change of the dependent function: $R(r) = r^{\alpha} P(r)$, whereby

$$\frac{\mathrm{d}R}{\mathrm{d}r} = r^{\alpha} \left(\frac{\mathrm{d}P}{\mathrm{d}r} + \frac{\alpha}{r} P \right) ,$$

$$\frac{\mathrm{d}^{2}R}{\mathrm{d}r^{2}} = r^{\alpha} \left(\frac{\mathrm{d}^{2}P}{\mathrm{d}r^{2}} + \frac{2\alpha}{r} \frac{\mathrm{d}P}{\mathrm{d}r} + \frac{\alpha(\alpha-1)}{r^{2}} P \right) ,$$

-0-

Substituting this into Eq. (1.2), and upon some straightforward simplifications, we obtain

$$r^{\alpha} \left[\frac{\mathrm{d}^2 P}{\mathrm{d}r^2} + \frac{2\alpha + d - 1}{r} \frac{\mathrm{d}P}{\mathrm{d}r} + \left(k^2 - \frac{Q - \alpha(d + a - 2)}{r^2} \right) P \right] = 0.$$
 (1.4)

Now, r^{α} will vanish only for r = 0 if $\alpha > 0$, and for $r = \infty$ if $\alpha < 0$, so we may drop it and examine the remaining differential equation for P(r):

$$\frac{\mathrm{d}^2 P}{\mathrm{d}r^2} + \frac{2\alpha + d - 1}{r} \frac{\mathrm{d}P}{\mathrm{d}r} + \left(k^2 - \frac{Q - \alpha(d + a - 2)}{r^2}\right)P = 0.$$
(1.5)

1.1. The very special cases

We notice that the equation (1.5) simplifies when $\alpha = -\frac{d-1}{2}$, in which case the first order derivative drops out:

$$\frac{\mathrm{d}^2 P}{\mathrm{d}r^2} + \left(k^2 - \frac{4Q + (d-1)(d-3)}{4r^2}\right)P = 0.$$
(1.6)

Finally, we find the extremely simple case where also Q = -(d-1)(d-3)/4, and when

$$\frac{\mathrm{d}^2 P}{\mathrm{d}r^2} + k^2 P = 0 . (1.7)$$

This is a simple differential equation with constant coefficients, and is solved by $P(r) = A \sin(kr + \delta)$, where A, δ are two undetermined constants. Going back to Eq. (1.1), we find that its special case

$$\frac{1}{r^{d-1}} \frac{\mathrm{d}}{\mathrm{d}r} \left(r^{d-1} \frac{\mathrm{d}R}{\mathrm{d}r} \right) + \left(k^2 + \frac{(d-1)(d-3)}{4r^2} \right) R = 0 , \qquad (1.8)$$

are solved by $R(r) = Ar^{-\frac{(d-1)}{2}} \sin(kr + \delta)$, which does look like a considerable feat.

On the other hand, when $\alpha = 1 - \frac{d}{2}$, the equation (1.5) simplifies into:

$$\frac{\mathrm{d}^2 P}{\mathrm{d}r^2} + \frac{1}{r}\frac{\mathrm{d}P}{\mathrm{d}r} + \left(k^2 - \frac{4Q + (2-d)^2}{4r^2}\right)P = 0 , \qquad (1.9)$$

which is solved by $P(r) = AJ_{\mu}(kr) + BN_{\mu}(kr)$, where $\mu = \pm \sqrt{Q + (\frac{d}{2} - 1)^2}$, and $J_{\mu}(kr)$ and $N_{\mu}(kr)$ are the *cylindrical* Bessel functions of the first and second kind.

Finally, when $\alpha = -\frac{d-3}{2}$, the equation (1.5) simplifies into:

$$\frac{\mathrm{d}^2 P}{\mathrm{d}r^2} + \frac{2}{r} \frac{\mathrm{d}P}{\mathrm{d}r} + \left(k^2 - \frac{4Q + (d-1)(d-3)}{4r^2}\right)P = 0 , \qquad (1.10)$$

which is solved by $P(r) = Aj_{\mu}(kr) + Bn_{\mu}(kr)$, where $\mu = \pm \sqrt{Q + (d-1)(d-3)/4}$, and $j_{\mu}(kr)$ and $n_{\mu}(kr)$ are the *spherical* Bessel functions of the first and second kind.

There is another relatively simple case, which can be seen straight from the original equation (1.1). When k = 0, the equation becomes homogeneous. That is, should we replace $r \to \lambda r$ for some non-zero constant λ and leave everything else the same, the equation stays the same. More precisely, both terms in Eq (1.1) pick up a multiplicative constant λ^{-2} . This however can be factored out, and being non-zero, can be cancelled. For a homogeneous equation, it is consistent to look for $R(r) = r^{\alpha}$; indeed, each term in the equation now scales as $\lambda^{\alpha-2}$, which again is an overall constant and can easily be cancelled ¹). Straightforward calculation yields:

$$\frac{1}{r^{d-1}} \frac{\mathrm{d}}{\mathrm{d}r} \left(r^{d-1} \frac{\mathrm{d}r^{\alpha}}{\mathrm{d}r} \right) - \frac{Q}{r^2} r^{\alpha} = 0 ,$$

¹⁾ Were it not for this homogeneity, looking for $R(r) = r^{\alpha}$ could not possibly work.

$$\frac{1}{r^{d-1}} \frac{\mathrm{d}}{\mathrm{d}r} \left(\alpha r^{\alpha+d-2} \right) - Qr^{\alpha-2} = 0 ,$$

$$\frac{\alpha(\alpha+d-2)}{r^{d-1}} r^{\alpha+d-3} - Qr^{\alpha-2} = 0 ,$$

$$\left(\alpha(\alpha+d-2) - Q \right) r^{\alpha-2} = 0 .$$

Thus, the exponent α is determined as the solution of

$$\alpha^2 + (d-2)\alpha - Q = 0 , \qquad (1.12)$$

that is,

$$R(r) = r^{\alpha}, \qquad \alpha_{\pm} = \frac{2-d}{2} \pm \sqrt{\frac{(d-2)^2}{4}} + Q , \qquad (1.13)$$

are the two solutions of Eq. (1.1), when k = 0.

References

- [1] G. Arfken: Mathematical Methods for Physicists, (Academic Press, New York, 1985).
- F.W. Byron and R.W. Fuller: Mathematics of Classical and Quantum Physics, (Dover, New York, 1969).
- J.W. Dettman: Mathematical Methods in Physics and Engineering, (Dover, New York, 1962).
- [4] I.S. Gradshteyn and I.M. Ryzhik: Table of Integrals, Series, and Products, (Academic Press, New York, 1980).
- [5] N.N. Lebedev: Special Functions & Their Applications, (Dover, New York, 1972).
- [6] J. Mathews and R.L. Walker: Mathematical Methods of Physics, (Addison-Wesley, Redwood City, 1964).
- [7] L.A. Segel: Mathematics Applied to Continuum Mechanics, (Dover, New York, 1977).
- [8] P.R. Wallace: Mathematical Analysis of Physical Problems, (Dover, New York, 1972).