
On Rockets

1. The General Equation

Begin with the straightforward application of the third Newton’s law

d~p

dt
= ~F . (1.1)

If we assume that the momentum (and its change) are both in the direction of the (total)
force acting on the rocket, the vector notation can be omitted.

Expanding the derivative on the left, where p = mv, and assuming that the two forces
acting on the rocket are the thrust force (proportional to the change of the mass owing to
the depletion of the fuel) and the gravitiational force given in the familiar Newton-Coulomb
form, we obtain (dm

dt

)(dx

dt

)
+ m

d2x

dt2
= −f

dm

dt
−

gR2m

(R + x)2
. (1.2)

The sign of the thrust force is set negative, so that its value would be positive as the fuel is
depleted, i.e., when dm

dt is negative. We have also used that the Newton-Coulomb formula
for gravity is

Fgrav.(x) = GN
Mm

(R + x)2
, (1.3)

where GN is Newton’s constant, M the mass and R the radius of the planet off which the
rocket is launched. Since at the surface (x = 0), the gravitational force is mg, (with g the
planet’s gravitational acceleration), we have

Fgrav.(0) = GN
Mm

R2
= mg , (1.4)

whereupon GNM = gR2, which we have used in (1.2). The coefficient f stands for the
factor of efficiency and has the dimensions of speed.

Notice that Eq. (1.2) is a second order non-linear differential equation for x(t), depend-
ing on the function m(t); alternatively, it may be viewed as a linear, first order differential
equation for m(t), depending on the function x(t).

2. Constant Acceleration

For reasons or relative comfort of the passengers, we may want to ensure that the rocket
moves at constant acceleration, say ag, where a is some constant. As the acceleration is
set to be this constant, we have

d2x

dt2
= ag , (2.1a)

dx

dt
= agt + v0 = agt , (2.1b)

x(t) = 1
2
agt2 + v0t + x0 = 1

2
agt2 , (2.1c)

– 1 –



where we have set v0 = 0 = x0 so as to describe lift-off from the surface and with no initial

speed. Put in (1.2), this produces

(dm

dt

)
agt + mag = −f

dm

dt
− gR2m

(R + 1
2
agt2)2

. (2.2)

This differential equation is separable and we soon obtain

dm

m
= −gdt

(a + (1 + ag
2R

t2)−2)

agt + f
. (2.3)

This can be solved by strainghtorward integration on both sides (albeit the integral on the

right hand side is really pesky), and we will quote the Mathematica solution below.

Before that, however, the differential equation (and the right-hand-side integral above)

simplifies in two regimes, for very early times (t ≈ 0+) and for very long times (t → +∞).

In the first case, we only keep the leading terms, and so obtain

dm

m
= −gdt

(a + (1 + ag
2R t2)−2)

agt + f
≈ −gdt

(a + 1)

f
, (2.4)

whereby we find that m(t) should start out as m(t) ≈ m0e
−(a+1)gt/f , where m0 = m(0) is

the initial total mass of the rocket.

On the other hand, for very tong times, we have

dm

m
= −gdt

(a + (1 + ag
2R t2)−2)

agt + f
≈ −gdt

(a + 0)

agt
= −

dt

t
, (2.5)

so that the mass of the rocket approaches asymptotically m(t) ≈ µ∞/t, where µ∞ is a

suitable constant.

Finally, it is clear form (2.3), that m(t) is a monotonically decreasing function of time,

as expected on physical grounds.

Mathematica solves (2.3) and (after a little simplification) produces

exp

{
1

2

(
−4gR2

(f2 + 2agR)(2R + agt2)
−

2fgRt

(f2 + 2agR)(2R + agt2)

−
4fgR

√
2agR arctan(

√
ag
2R

t)

(f2 + 2agR)2
−

f
√

2gR arctan(
√

ag
2R

t)
√

a(f2 + 2agR)

+ 2C(1) − 2 log(f + agt)

+
4f2gR log(f + agt)

(f2 + 2agR)
2 − 2f2gR log(2R + agt2)

(f2 + 2agR)
2

−
4gR log(f + agt)

f2 + 2agR
+

2gR log(2R + agt2)

f2 + 2agR

)}
.

(2.6)
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This can be manipulated into a more reasonable and compact form:

m(t) =
C

A(t)

[
B(t)

[A(t)]2

] 4gR3

D2T2

e−
gR(2R+ft)

D B(t) e−
gfT (D+8R2/T2)

2 D2 arctan(t/T )

A(t)
def
= f + 2Rt/T 2 , B(t)

def
= 2R(1 + t2/T 2) ,

D
def
= f2 + 4R2/T 2 , T

def
=

√
2R

ag
, C

def
= m0 f e

gR
D

[ f2

2R

] 4gR3

D2T2

,

(2.7)

where the constant—C(1) in Mathematica’s raw result, equal to lnC of Eq. (2.7)—is fixed
so that indeed m(0) = m0. Note the appearance of the planet’s characteristic time-scale,

T
def
=

√
2R/ag—it depends only on the constants characteristic of the planet. Also, the

constant
√

D
def
=

√
f2 + 4R2/T 2 may be thought of as a shifted factor of efficiency; the

shift roughly corresponding to the increase in the fuel depletion required to countermand
the gravitational force (at initial time).

The t → ∞ limiting behavior of (2.7) is easy to read off, as B/A2 tend to a constant,
ft/B → 0, and so A−1 remains, recovering the qualitative behavior of the solution of (2.5).
The exponential behavior at t → 0 is less straightforward, as it appears at a sub-leading
orders when expanding (2.7); so there we learn more (and more easily) from the limiting
form of the differential equation, (2.4), than from the solution (2.7).
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