(1) $2 \times 1=1 \times 2$

Or, how a system of two first-order differential equations
equals a single second-order differential equation.
Consider the pet example system of two first-order differential equations

$$
\begin{align*}
\frac{\mathrm{d} w}{\mathrm{~d} t} & =a w-c w r \tag{1a}\\
\frac{\mathrm{~d} r}{\mathrm{~d} t} & =-b r+k w r \tag{1b}
\end{align*}
$$

A solution of this system consists of a pair of functions of time, $(w(t), r(t))$. In fact, since we have two first-order differential equations, we need to perform two integrations and so expect two constants. Thus, the general solution will be a pair of two functions $\left(w\left(t ; C_{1}, C_{2}\right), r\left(t ; C_{1}, C_{2}\right)\right)$ which both depend on time, t, but also the two integration constants, C_{1}, C_{2}.

Suppose that we can somehow solve for one of the two functions, say $w(t)$. Then, Eq. (1a) determines the other function, $r(t)$, completely. That is, given a solution for $w(t)$, we can solve (algebraically, i.e, without integration) Eq. (1a) for $r(t)$ and obtain that

$$
c w r=a w-\frac{\mathrm{d} w}{\mathrm{~d} t}
$$

whence

$$
\begin{equation*}
c r(t)=a-\frac{1}{w} \frac{\mathrm{~d} w}{\mathrm{~d} t} . \tag{2}
\end{equation*}
$$

So, if we only knew $w(t)$, and of course its derivative, $r(t)$ would be completely determined.

To obtain a (differential) equation for $w(t)$ alone, we will try to elliminate $r(t)$ and $\frac{\mathrm{d} r}{\mathrm{~d} t}$ in terms of $w(t)$ and its derivatives. To elliminate two quantities, we should need two relations and that's precisely what we have in $(1 a, b)$; so, if it were possible to elliminate both r and $\frac{\mathrm{d} r}{\mathrm{~d} t}$ from these two equations alone, we would be left with no equation for w.

To introduce a new equation, take the derivative of Eq. (1a):

$$
\begin{equation*}
\frac{\mathrm{d}^{2} w}{\mathrm{~d} t^{2}}=a \frac{\mathrm{~d} w}{\mathrm{~d} t}-c\left[\frac{\mathrm{~d} w}{\mathrm{~d} t} r+w \frac{\mathrm{~d} r}{\mathrm{~d} t}\right] \tag{1c}
\end{equation*}
$$

Next note that Eq. (1b) determins $\frac{\mathrm{d} r}{\mathrm{~d} t}$ in terms of $w(t)$, its derivative and $r(t)$. On the other hand, Eq. (1a) provides $r(t)$ in terms of only $w(t)$ and its derivative ${ }^{1)}$, as solved in (2). Therefore, we first elliminate $\frac{\mathrm{d} r}{\mathrm{~d} t}$ from Eq. (1c), using Eq. (1b):

$$
\begin{align*}
\frac{\mathrm{d}^{2} w}{\mathrm{~d} t^{2}} & =a \frac{\mathrm{~d} w}{\mathrm{~d} t}-c\left[\frac{\mathrm{~d} w}{\mathrm{~d} t} r+w(-b r+k w r)\right] \tag{3}\\
& =a \frac{\mathrm{~d} w}{\mathrm{~d} t}-(c r)\left[\frac{\mathrm{d} w}{\mathrm{~d} t}-b w+k w^{2}\right]
\end{align*}
$$

${ }^{1)}$ Caution: Eq. (2) can be used to elliminate $r(t)$ only if $c \neq 0$! If $c=0$, Eq. (1a) is already independent of $r(t)$ and may be solved readily for $w(t)$.

Finally, we elliminate $c r(t)$ from here, using Eq. (2):

$$
\begin{equation*}
\left.\frac{\mathrm{d}^{2} w}{\mathrm{~d} t^{2}}=a \frac{\mathrm{~d} w}{\mathrm{~d} t}-\left[a-\frac{1}{w} \frac{\mathrm{~d} w}{\mathrm{~d} t}\right]\left[\frac{\mathrm{d} w}{\mathrm{~d} t}-b w+k w^{2}\right)\right] \tag{4}
\end{equation*}
$$

that is,

$$
\begin{equation*}
\frac{\mathrm{d}^{2} w}{\mathrm{~d} t^{2}}=a b w-a k w^{2}-b \frac{\mathrm{~d} w}{\mathrm{~d} t}+k w \frac{\mathrm{~d} w}{\mathrm{~d} t}+\frac{1}{w}\left(\frac{\mathrm{~d} w}{\mathrm{~d} t}\right)^{2} . \tag{5}
\end{equation*}
$$

So, indeed, the system of two first-order differential equations $(1 a, b)$-with $c \neq 0$-is shown to be equivalent to a single second-order differential equation (5). Solving this, we would determine one of the functions, $w(t)$ and introduce two integration constants; the other function, $r(t)$ is then determined completely from Eq. (2).

Now, the second-order differential equation (5) indeed looks formidable and it is dubious whether this offers any practical simplification in comparison to the innocent-looking system $(1 a, b)$. The important point is however, the equivalence between a system of two first order differential equations and a single second-order one.

You may think of running this procedure "backwards" also. Suppose you were given the unpleasantly looking second order differential equation (5), for a single function $w(t)$. Then Eq. (2) defines a new (auxiliary) function, $r(t)$, with the use of which we can produce the system $(1 a, b)$. Of course, viewed this way, the choice of the new function (2) may seem somewhat unsuspected and artificial; note, however that Eq. (5) may be re-written as (3), whence the introduction of the new variable $r(t)$ as in (2) does seem ...well,... natural.

Sometimes, the system of first-order equations is relatively easily found and more easily analyzed then the original second-order equation. Sometimes, the second order equation is easier to solve or analyze. Finally, some questions pertain to the derivatives of $w(t)$ and $r(t)$, rather then the functions themselves. For example, the equilibrium states are most easily found by setting, in Eq. $(1 a, b), \frac{\mathrm{d} w}{\mathrm{~d} t}=0, \frac{\mathrm{~d} r}{\mathrm{~d} t}=0$. Issues pertaining to the curvature (concave vs. convex, etc.) are most easily dealt with using the second-order differential equation (5).

In general, this method of converting a system of two first-order differential equations into a single second-order equation can be repeated for much more general forms of the r.h.s. of Eqs. $(1 a, b)$, as long as either Eq. (1a) can be solved for r in terms of w and $\frac{\mathrm{d} w}{\mathrm{~d} t}$ or Eq. (1b) can be solved for w in terms of r and $\frac{\mathrm{d} r}{\mathrm{~d} t}$.

