
Orthogonality of Hermite Polynomials

The orthogonality relation of the Hermite polynomials is (here regarded as postulated)
∫ +∞

−∞
dx e−x2

Hn(x)Hm(x) = δm,n 2n
√

π n! , (1)

where we know that Hn(x) is a polynomial of nth order (n ≥ 0).
—◦—

0. We begin with H0, the first in the collection. As a polynomial of 0th order, this is
a constant, H0(x) = a0, and there is only the normalization condition to determine a0.
From Eq. (1), we read off (n = m = 0) that

∫ +∞

−∞
dx e−x2[

H0(x)
]2

=
√

π . (2)

On the other hand, we calculate:
∫ +∞

−∞
dx e−x2[

H0(x)
]2

=

∫ +∞

−∞
dx e−x2

[a0]
2 = a 2

0

∫ +∞

−∞
dx e−x2

. (3)

So, we need to evaluate the integral on the far right. The substitution u = x2 (should!)
recommend itself, so as to simplify the exponential function. Then we have

x =
√

u , dx =
1

2

du√
u

. (4)

However, note that the variable x is being integrated over both negative and positive
values in Eq. (3). Since the substitution x =

√
u by default implies a positive value for

the square-root, this would only be appropriate for the part of integration where x ≥ 0.
Therefore, we must divide the integration in two parts:

∫ +∞

−∞
dx e−x2

=

∫ 0

−∞
dx e−x2

+

∫ +∞

0

dx e−x2

. (5)

In the first integral, x takes negative values, so we must substitute x = −
√

u there (and
thus dx = − 1

2
du√

u
), while in the second integral x ≥ 0 and so x = +

√
u (and so dx = + 1

2
du√

u
)

is alright.

With these substitutions, the integral (5) becomes (note limits!)
∫ +∞

−∞
dx e−x2

= −1

2

∫ 0

+∞
du u− 1

2 e−u +
1

2

∫ +∞

0

du u− 1
2 e−u . (6)

Swapping the limits on the first integral changes its sign from negative to positive, and the
value of the fiirst integral is seen to be equal to that of the second, whence

∫ +∞

−∞
dx e−x2

=

∫ +∞

0

du u− 1
2 e−u =

∫ +∞

0

du u
1
2−1 e−u = Γ( 1

2) =
√

π . (7)

So,
∫ +∞
−∞ dx e−x2

[H0(x)]2 = a 2
0

√
π, and which should equal to

√
π by Eq. (2). There-

fore, a 2
0 = 1 and H0 = a0 = ±1.

—◦—
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As a seemingly idle side-remark, note that the change of variables (4) was by no means
necessary to determine that

∫ +∞

−∞
dx e−x2

= 2

∫ +∞

0

dx e−x2

. (8)

This result, by itself, is easier to obtain by splitting the integration into two parts, as
in (5), and than maneuvering the first integral into the form of the second one. To this
end, simply substitute x = −y in (note limits!)

∫ 0

−∞
dx e−x2

=

∫ 0

−∞
d(−y) e−(−y)2 = −

∫ 0

+∞
dy e−y2

,

= +

∫ +∞

0

dy e−y2

= +

∫ +∞

0

dx e−x2

,

(9)

where the third equlity follows upon swapping the limits of integration and the fourth
equality simple states that it does not mater what letter we use for the integration variable
in a definite integral 1). This proves that

∫ +∞

−∞
dx e−x2

= 2

∫ +∞

0

dx e−x2

, (10)

and we may now proceed with the substitution x =
√

u, as above.
—◦—

1. We continue with H1(x), the next Hermite polynomial. Being a polynomial of 1st

order, H0(x) = b0 +b1x, and we need two conditions for the two coefficients: orthogonality
with the only preceding polynomial, H0, and the normalization.

Start with the orthogonality:
∫ +∞

−∞
dx e−x2

H0(x)H1(x) =

∫ +∞

−∞
dx e−x2

a0(b0 + b1x) ,

= b0

∫ +∞

−∞
dx e−x2

+ b1

∫ +∞

−∞
dx e−x2

x ,

= b0
√

π + b1

∫ +∞

−∞
dx e−x2

x ,

(11)

where we’ve used that a0 = 1, and also the result (7). We remain with the calculation of
the latter integral above. We may again use the substitution (4), and just as before, we
must split the interal into two parts, one over negative x (where x = −

√
u), and the other

over positive x (where x = +
√

u). Following this through, we obtain (note limits!)
∫ +∞

−∞
dx e−x2

x =

∫ 0

+∞
(− 1

2
du u− 1

2 ) e−u(−u+ 1
2 ) +

∫ +∞

0

(1
2
du u− 1

2 ) e−u(+u+ 1
2 ) .

= 1
2

∫ 0

+∞
du u− 1

2+ 1
2 e−u + 1

2

∫ +∞

0

du u− 1
2+ 1

2 e−u .

(12)

1) . . .as long as it does not conflict with something else in the same expression!
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Swapping the limits on the first integral changes its sign from positive to negative, and
the value of the fiirst integral is seen to be equal in magnitude to that of the second—but
opposite in sign, whence

∫ +∞

−∞
dx e−x2

x = − 1
2

∫ +∞

0

du e−u + 1
2

∫ +∞

0

du e−u = 0 . (13)

So [since H0(x) ⊥ H1(x)], we have on one hand from (1) and on the other hand by
the preceding direct calculation that

0
!
=

∫ +∞

−∞
dx e−x2

H0(x)H1(x) = b0

√
π + b1·0 , (14)

which forces b0 = 0, but says nothing about b1. And only rightly so, since we still have to
use the normalization condition, again read off (1). We calculate:

21
√

π 1!
!
=

∫ +∞

−∞
dx e−x2[

H1(x)]2 =

∫ +∞

−∞
dx e−x2[

b1x]2 = b 2
1

∫ +∞

−∞
dx e−x2

x2 . (15)

Now again, we split the integral at x = 0 and substitute x = −
√

u for the x ≤ 0 part, and
x =

√
u for the x ≥ 0 part. Now

∫ +∞

−∞
dx e−x2

x2 =

∫ 0

+∞
(− 1

2du u− 1
2 ) e−u(−

√
u)2 +

∫ +∞

0

(1
2du u− 1

2 ) e−u(+
√

u)2 .

= − 1
2

∫ 0

+∞
du u− 1

2+1 e−u + 1
2

∫ +∞

0

du u− 1
2+1 e−u .

(16)
Swapping again the limits on the first integral changes its sign and

∫ +∞

−∞
dx e−x2

x2 =

∫ +∞

0

du u
1
2 e−u =

∫ +∞

0

du u
3
2−1 e−u = Γ(3

2 ) . (17)

Using now that Γ(z+1) = zΓ(z), we have Γ(3
2
) = 1

2
Γ(1

2
) = 1

2

√
π. Therefore,

2
√

π
!
=

∫ +∞

−∞
dx e−x2[

H1(x)]2 = b 2
1

1
2

√
π , (18)

or, b 2
1 = 4, so that b1 = ±2 and H1(x) = ±2x.

—◦—

The maneuver of splitting the integral (with symmetric limits at the mid-point) in
Eq. (16) was again similar to the maneuvers done previously and one can easily prove the
general results [see Know Thy Math]:

∫ +L

−L

dx f (x) = 2

∫ +L

0

dx f (x) , if f(−x) = +f(x) , (19even)

∫ +L

−L

dx g(x) = 0 , if g(−x) = −g(x) . (19odd)
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