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Quizz Solution by T.Hübsch

1. Given the generating function

g(x, t; a, b) =
eax2t

1 + bt

def
=

∞∑

n=0

An(x; a, b)tn ,

where a, b are some constants (see below), determine at least 20 points’ worth of the
following:

a. a contour-integral formula for the An; [=5pt]

b. a series representation for the An (expanding eax2t and (1 + bt)−1 separately, then
combining the two sums); [=5pt]

c. a recurrence relation by operating with ∂
∂t

on the generating function; [=5pt]

d. a recurrence relation by operating with ∂
∂x on the generating function; [=5pt]

e. the differential equation that the An satisfy; [=5pt]

f. the integral
∫ ∞
−∞ dxAmAn, by integrating g(x, t; a, b)g(x, s; a, b)—assuming <e a < 0

(why?), and re-expanding the answer in s, t. (No orthogonality of the An’s is estab-
lished!) [=15pt]

a. From the definition of the An’s, we see that they are proportional to the coefficients
in the Taylor (MacLaurin) series:

An(x; a, b) =
1

n!

[
∂n

∂tn
g(x, t; a, b)

]

t=0

,

which is easy to rewrite, using Cauchy’s integral formula, as

An(x; a, b) =
1

2πi

∮

C

dz g(x, z; a, b)

zn+1
=

1

2πi

∮

C

dz eax2z

(1 + bz)zn+1
.

The contour C is chosen in any convenient way, as long as it circumscribes z = 0 once, in
a counter-clockwise manner.

b. The individual expansions of eax2t and of (1 + bt)−1 are straightforward:

g(x, t; a, b) =
∞∑

k,l=0

(ax2t)k

k!
(−bt)l .

Seeing that the powers of t combine into tk+l, we introduce n
def
= (k+l), and substitute

l = n−k. Now, since l ≥ 0, it follows that also n−k ≥ 0, so that n ≥ k, and k acquires a
finite upper limit:

g(x, t; a, b) =

∞∑

n=0

[ n∑

k=0

akx2k(−b)n−k

k!

]
tn .
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Comparing with the defining equation for the An’s, the quantity in the square brackets is

seen to equal the An. Introducing a new summation variable m
def
= (n−l):

An(x; a, b) =

n∑

k=0

akx2k(−b)n−k

k!
,

or

An(x; a, b) = (−b)n
n∑

k=0

(−1)k (ax2/b)k

k!
.

This makes it obvious that An(x; a, b) is a degree-2n polynomial in x.

c. Operating with ∂
∂t

on the left-hand side of the defining equation:

∂

∂t

eax2t

1 + bt
= ax2 eax2t

1 + bt
− b

eax2t

(1 + bt)2
=

ax2 + abx2t − b

1 + bt
· eax2t

1 + bt
,

=
ax2 + abx2t − b

1 + bt

∞∑

n=0

Antn .

(1)

On the other hand,

∂

∂t

∞∑

n=0

Antn =

∞∑

n=0

nAntn−1 .

Equating these two and multiplying through by 1+bt, we obtain:

(ax2 − b)

∞∑

n=0

Antn + abx2
∞∑

n=0

Antn+1 =

∞∑

n=0

nAntn−1 + b

∞∑

n=0

nAntn ,

or (shifting the dummy summation indices to identify like powers of t):

∞∑

n=−1

(n+1)An+1t
n +

∞∑

n=0

(bn + b − ax2)Antn − abx2
∞∑

n=1

An−1t
n = 0 .

Setting the (combined) coefficients of the various powers of t to zero, we obtain

@t−1 : 0·A0 = 0 ,

@t0 : 1·A1 + [b·0 + b − ax2]A0 = 0 ,

@tk : (k+1)Ak+1 + [b(k+1) − ax2]Ak − abx2Ak−1 = 0 , k ≥ 1 . (2)

This yields the recurrence relation:

(k+1)Ak+1 = [ax2 − b(k+1)]Ak + abx2Ak−1 , (3)

which includes all of the above if we set Ak ≡ 0 for k < 0.

d. Similarly:

∂

∂x

eax2t

1 + bt
= 2axt

eax2t

1 + bt
= 2ax

∞∑

n=0

Antn+1 . (4)
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On the other hand,

∂

∂x

∞∑

n=0

Antn =

∞∑

n=0

A′
ntn .

Equating these two, we obtain:

2ax
∞∑

n=0

Antn+1 =
∞∑

n=0

A′
ntn ,

or (shifting the dummy summation indices to identify like powers of t):

2ax

∞∑

n=1

An−1t
n =

∞∑

n=0

A′
ntn ,

Setting the (combined) coefficients of the various powers of t to zero, we obtain

@t0 : 0 = A′
0 ,

@tk : 2axAk−1 = A′
k , k > 0 , (5)

the latter of which is the second required recurrence relation.

e. From (5),

Ak−1 =
1

2ax
A′

k , (5a)

A′
k+1 = 2axAk . (5b)

Substituting (5a) into (3), we obtain

(k+1)Ak+1 = [ax2 − b(k+1)]Ak +
bx

2
A′

k , (3a)

the derivative of which is

(k+1)A′
k+1 = 2axAk + [ax2 − b(k+1)]A′

k +
b

2
A′

k +
bx

2
A′′

k . (3b)

In this, we eliminate A′
k+1, using (5b) and obtain the desired (2nd order) differential

equation for the Ak(x; a, b):

bx

2
A′′

k + [ax2 − b(k+ 1
2
)]A′

k − 2akxAk = 0 . (3c)

Note that the ‘no derivative’ term depends on parameters a and k, both of which appear

in the derivative terms. Hence, this can be identified with Sturm-Liouville type equation

Lu + λw(x)u = 0 ,

only in the too restricted sense, when λ = 0 and (before making L self-adjoint)

L =
bx

2

d2

dx2
+ [ax2 − b(k+ 1

2)]
d

dx
− 2akx .
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Since this includes only the λ = 0 case, the major utility of the Sturm-Liouville theory
(the use of the complete set of solutions, labeled by λ) is lost. In particular, we cannot
infer any orthogonality relation between the Ak’s.

f. We multiply the desired integral,
∫ ∞
−∞ dxAm(x)An(x) by tmsn and sum over n, m:

∞∑

m,n=0

∫ ∞

−∞
dx Am(x)tm An(x)sn =

∫ ∞

−∞
dx

[ ∞∑

m=0

Am(x)tm
][ ∞∑

n=0

An(x)sn

]
, (6a)

=

∫ ∞

−∞
dx

eax2t

1 + bt

eax2s

1 + bs
=

1

1 + bt

1

1 + bs

∫ ∞

−∞
dx eax2(t+s) , (6b)

=
1

1 + bt

1

1 + bs

√
π

−a(t + s)
. (6c)

From (6a) to (6b), we used that the An’s were defined as the coefficient functions in the
expansion of the generating functions. From (6b) to (6c), we evaluated the integral by
substituting ξ = −ax2(t+s) which brings the integral into the Γ-function form:

∫ ∞

−∞
dx eax2(t+s) = 2

∫ ∞

0

dx eax2(t+s) = 2

∫ ∞

0

ξ
1
2−1dξ

2
√

−a(t + s)
e−ξ =

Γ(1
2 )√

−a(t + s)

In (6b), it is clear that <e a < 0 ensures convergence of these integrals. It now remains
to re-expand the right-hand side of Eq. (6c) as a power series in s, t and identify the
coefficients of the various s, t-monomials as the values of the corresponding integrals on
the left-hand side of (6a). This we leave as an easy exercise for the diligent student.

Notice however, that the right-hand side of (6c) is not analytic: it blows up when
t+s = 0! Yet, the left-hand side started out as a manifestly analytic power series (no
negative powers). Therefore, it must be that the integrals diverge. Indeed, this must be
the case, since the An’s are polynomials, and so are the products AmAn; the integrals over
infinite limits necessarily diverge. It is easy to remedy this by considering instead integrals
of the type ∫ ∞

−∞
dx e−cx2

Am(x)An(x) , <e c > 0 .

Then, the calculation as above produces

∞∑

m,n=0

∫ ∞

−∞
dx e−cx2

Am(x)tm An(x)sn =
1

1 + bt

1

1 + bs

√
π

c − a(t + s)
, (7)

which now is finite at t, s = 0 and has a well-defined (double) Taylor series in s, t. The
above integrals are now calculated by re-expanding the left-hand side of (7) and identifying
the coefficients in the double power series with the corresponding integrals on the left.

The rate at which the original integrals in (6a) diverge can now be determined by
taking the limit c → 0.

2. Attempt solving the differential equation

αx3y′′ + βxy′ − γ(1 + x)y = 0
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in the form y =
∑∞

k=0 ckxk+s although x=0 is an essential singularity.

a. Determine the values(s) of s. [=2pt]

b. Determine the recursion relation. [=4pt]

c. Find a choice of α, β, γ such that the above series is a valid solution. [=4pt]

We substitute the series form of the solution and obtain

α

∞∑

k=0

ck(k+s)(k+s−1)xk+s+1 + β

∞∑

k=0

ck(k+s)xk+s − γ

∞∑

k=0

ckxk+s − γ

∞∑

k=0

ckxk+s+1 = 0 .

In the first and the last sum, we shift k → k−1 and combine:

∞∑

k=1

ck−1

[
α(k+s−1)(k+s−2) − γ

]
xk+s +

∞∑

k=0

ck

[
β(k+s) − γ

]
xk+s = 0 .

Compared to the first sum, the second one has an extra term when k = 0, which we can
write separately and combine the rest:

c0

[
βs−γ

]
xs +

∞∑

k=1

[
ck−1

[
α(k+s−1)(k+s−2)−γ

]
−

[
γ−β(k+s)

]]
xk+s = 0 .

Different powers of x being linearly independent, the numerical coefficient in front of each
power has to vanish separately.

a. Since c0 6=0 (the series must begin somewhere), the vanishing of the coefficient of xs

imposes

βs − y = 0 , i.e., s =
γ

β
.

b. The vanishing of the coefficients in front of xk+s in the infinite sum produces the
recursion relation

ck = ck−1
α(k+s−1)(k+s−2)−γ

γ−β(k+s)
.

Using that s = γ/β in the denominator and shifting k → k+1, this simplifies a little:

ck+1 = −ck
α(k+s)(k+s−1)−γ

β(k + 1)
. (8)

c. It is easy to see that for large k, the ratio of successive terms in the series becomes

lim
k→∞

∣∣∣ck+1x
k+s+1

ckxk+s

∣∣∣ = lim
k→∞

∣∣∣α(k+s)(k+s−1)−γ

β(k + 1)

∣∣∣ =
α

β
lim

k→∞
k = ∞ ,

whence the series diverges, as expected since we expanded about an essential singularity.
However, if for some k = K, the numerator in the recursion relation (8) should happen to
vanish, so would cK+1, and thereupon all higher coefficients. The series would terminate
and become a finite polynomial (up to an overall negative power of x), a perfectly well-
defined expression. So,

α
(
K+

γ

β

)(
K+

γ

β
−1

)
−γ = 0 ,
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or

K± =
1

2
−

γ

β
±

√
1

4
+

γ

α
.

Since k ranges over integers, at least one of the two solutions K± must also be an integer,

which happens only for select values of α, β, γ.

For example, this happens when α = 3, β = −2 and γ = 6. Then K− = 2 and

K+ = 5, s = −3 and the recursion relation is

ck+1 = ck
3

2

(k − 2)(k − 5)

(k + 1)
,

so the coefficients turn out to be: c1 = 15c0, c2 = 3c1 = 45c0, c3 = 0 and so ck = 0 for

k ≥ 3. That is, the differential equation

3x3y′′ − 2xy′ − 6(1 + x)y = 0

is solved by y = c0(
1
x3 + 15

x2 + 45
x ). This then is and example of the limitation (termination)

of the series solution.

Note that although we obtained two solutions, K±, for possible limiting values of k,

only one of them (K−) corresponds to a solution to the differential equation, and so we

only obtain one solution. The other limiting value cannot be reached as the series already

becomes limited by the lower one. On the other hand, if K− turned out to be negative, only

K+ would correspond to a solution to the differential equation. The other solution must
be obtained either by expanding about a different point or by using the general (integral)

formula for the second solution.

3. For the differential equation

x2(x2−1)
d2y

dx2
+ (x+1)

dy

dx
− 4! y = 0 , (9)

answer the following questions (circle the correct option in 1–3, write ‘yes’ or ‘no’ for 4, 5):

1: Is the point x = 0 a smooth, or a regular-singular, or an irregular singular point ?

2: Is the point x = 1 a smooth, or a regular-singular, or an irregular singular point ?

3: Is the point x = 4 a smooth, or a regular-singular, or an irregular singular point ?

4: Can Eq. (9) be solved by the method of series in the form y =
∑∞

k=0 akxk+s ?

5: Can Eq. (9) be solved by the method of series in the form y =
∑∞

k=0 ak(x−1)k+s ?

4. For the differential equation R
dI

dt
+

1

C
I = 0,
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a. find I = I(t); [=5pt]

b. determine the constant of integration in part a. so that C = 10−2F , R = 106Ω and
I(0) = 1A. [=5pt]

a. The differential equation is separable, for it can be rewritten as

R
dI

dt
= − 1

C
I , i.e.,

dI

I
= − 1

RC
dt ,

which is easy to integrate directly
∫

dI

I
= − 1

RC

∫
dt , ⇒ ln(I) = K − t

RC
,

where K is the integration constant. Exponentiating both sides, we obtain the general
solution,

I(t) = eK−t/RC . (10)

b. To determine the integration constant, we substitute the t=0 values as given (remem-

ber that “
!
=” denotes an equality that we are imposing):

1A
!
= I(0) = eK− 0

RC = eK ,

so K = 0 seems to be the numerical value of the integration constant. However, there is a
problem with this! The expression eK must be dimensionless, as must K be. To see this,
note that eK = 1+K + 1

2K2 + . . . , so that K must have the units of the number ‘1’—that
is, no units at all. It is than plain impossible to equate a dimensionless quantity eK to the
constant 1A.

Instead, a little maneuver in writing the general solution will save our face. Write
K = ln(κ), whereupon the general solution becomes I(t) = κe−t/RC . Now this makes
perfect (physics/engineering/. . .) sense, since κ is again the integration constant in a simple
disguise, but can easily be assigned a value with the required dimensions. Indeed:

1A
!
= I(0) = κe−

0
RC = κ ,

Thus, in this case, κ = 1A, and has the physical meaning of the value of the current at
the time t = 0. More generally, we can write κ = I(0), so that the general solution is more
appropriately written as

I(t) = I(0)e−t/RC . (11)

5. Find at least one singular point of the differential equation

sin(
θ

2
)
d2f (θ)

dθ2
+ cot(θ)f(θ) = 0 , (12)

and determine whether it is a regular or an essential singularity. (0 ≤ θ ≤ π)

A. First bring the second order differential equation into the “standard” form:

d2f

dθ2
+

[ cot(θ)

sin(θ
2 )

]
f = 0 , (13)
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from where we identify the “standard” coefficients

P (θ) ≡ 0 , Q(θ) =
cot(θ)

sin(θ
2
)

=
cos(θ)

sin(θ) sin( θ
2
)

. (14)

P (θ) is clearly finite, while Q(θ) diverges whenever sin(θ) sin( θ
2) vanishes—which happens

at θ = 0 (both factors vanish) and at θ = π (only the first factor vanishes). Therefore, the
points θ = 0, π are singular.

To determine the type of the singularity, check if (θ− θ0)
2Q(θ) is finite as θ → θ0. At

θ0 = 0,

(θ − θ0)
2Q(θ) = θ2 cos(θ)

sin(θ) sin( θ
2 )

θ→0
−−−→ θ2 (1 + . . .)

(θ + . . .)( θ
2 + . . .)

→ 2 , (15)

which is finite and wherefore θ = 0 is a regular singular point.

At θ0 = π, introduce ϑ
def
= (θ−π), so

(θ − π)2Q(θ) = ϑ2 cos(ϑ + π)

sin(ϑ + π) sin(ϑ+π
2

)
= ϑ2 [− cos(ϑ)]

[− sin(ϑ)][cos(ϑ
2
)]

,

θ→0
−−−→ ϑ2 (1 + . . .)

(ϑ + . . .)(1 + . . .)
→ 0 ,

(16)

which is finite, and θ = π also is a regular singular point.

Instead of the small-angle expansions sin θ ≈ θ and cos θ ≈ 1 + . . ., one could have
applied L’Hospital’s rule (taking the second derivative of the numerator and of the denom-
inator at θ = 0 and taking the first derivatives at θ = π). The result is the same.

6. Find the singular points of the differential equation

x
d2y

dx2
+ k2y = 0 , (17)

and find a solution in form of a power series.

A. First bring the second order differential equation into the “standard” form:

d2y

dx2
+

1

x
k2y = 0 , (18)

from where we identify the “standard” coefficients

P (x) ≡ 0 , Q(x) =
1

x
. (19)

P (x) is clearly finite, while Q(x) diverges only at x = 0. Therefore, among finite values of
x, only the point x = 0 is singular. Furthermore, the coefficients are P (x) ≡ 0, while Q(x)
blows up, linearly. Therefore, x2Q(x) is finite,

For x = ∞, we substitute z = 1/x, and use that

P̃ (z) =
[2

z
−

P (1
z )

z2

]
=

[2

z
−

0

z2

]
=

2

z
,

Q̃(z) =
Q( 1

z
)

z4
=

z

z4
= z−3 .

(20)
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At x = ∞, z = 0, and there P̃ (0) ≡ 0 is finite, but Q̃(z) blows up cubically. Therefore

z2Q̃(z) also blows up and x = ∞ (z = 0) is an essential singularity.

To determine the type of the singularity, check if (θ− θ0)
2Q(θ) is finite as θ → θ0. At

θ0 = 0,

(θ − θ0)
2Q(θ) = θ2 cos(θ)

sin(θ) sin( θ
2
)

θ→0
−−−→ θ2 (1 + . . .)

(θ + . . .)( θ
2

+ . . .)
→ 2 , (21)

which is finite and wherefore θ = 0 is a regular singular point.

At θ0 = π, introduce ϑ
def
= (θ−π), so

(θ − π)2Q(θ) = ϑ2 cos(ϑ + π)

sin(ϑ + π) sin(ϑ+π
2 )

= ϑ2 [− cos(ϑ)]

[− sin(ϑ)][cos(ϑ
2 )]

,

θ→0
−−−→ ϑ2 (1 + . . .)

(ϑ + . . .)(1 + . . .)
→ 0 ,

(22)

which is finite, and θ = π also is a regular singular point.

Instead of the small-angle expansions sin θ ≈ θ and cos θ ≈ 1 + . . ., one could have
applied L’Hospital’s rule (taking the second derivative of the numerator and of the denom-
inator at θ = 0 and taking the first derivatives at θ = π). The result is the same.

7. For the differential equation

x2(x2−1)
d2y

dx2
+ (x+1)

dy

dx
− 4! y = 0 , (23)

answer the following questions (circle the correct option in 1–3, write ‘yes’ or ‘no’ for 4, 5):

1: Is the point x = 0 a smooth, or a regular-singular, or an irregular singular point ?

2: Is the point x = 1 a smooth, or a regular-singular, or an irregular singular point ?

3: Is the point x = 4 a smooth, or a regular-singular, or an irregular singular point ?

4: Can Eq. (23) be solved by the method of series in the form y =
∑∞

k=0 akxk+s ?

5: Can Eq. (23) be solved by the method of series in the form y =
∑∞

k=0 ak(x−1)k+s ?

Use the space below for calculations.
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8. Solve the partial differential equation

∂2f (x, y)

∂x2
− 2

∂2f (x, y)

∂x∂y
+

∂2f(x, y)

∂y2
+ 9 f(x, y) = 0 , (∗)

using Fourier (integral) transforms:

a: Find the x-Fourier transform of Eq. (∗). [=3pt]

b: Find the y-Fourier transform of Eq. (∗). [=3pt]

c: Find the (double) x, y-Fourier transform of Eq. (∗). [=3pt]

d: State the relation between kx and ky (the inverse variables for x and y, respectively)
as implied by the double Fourier transform of Eq. (∗). [=3pt]

e: Write down the general solution to Eq. (∗), as obtained by the double-inverse trans-
form, and implementing the condition from part d. [=3pt]

Use the space below and on the back for calculations.


