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2nd Midterm Exam Solutions (T. Hübsch)

— DISCLAIMER —
The completeness and detail presented herein were
by no means expected in the Student’s solutions for
full credit. The additional information given here is
solely for the Student’s convenience and education.

1. The solution to this problem follows closely the examples done in class.

a. We begin by noting that g(x, t) =
∑∞

n=−∞ An(x)tn defines the An(x) as the coeffi-

cients of the Laurent 1) expansion of g(x, t)—the power series in t about t = 0. Therefore,

An(x) =
1

n!

[
∂n

∂tn
ex(t+x/2t)

]

t=0

, n ≥ 0 , (1)

should have been a give-away.

Recall Cauchy’s integral formula

dnf

dzn
=

n!

2πi

∮

C

dζ f(ζ)

(ζ − z)n+1
, (2)

where C is any contour that encircles ζ = z precisely once, and in the counterclockwise
fashion. Then, the above derivative formula is easy to rewrite as:

An(x) =
n!

2πi

∮

C

dζ ex(ζ+x/2ζ)

(ζ − z)n+1
, for all n . (3)

b. The series representation is obtained by rewriting g(x, t) = extex2/2t, expanding the
exponentials and then re-summing:

g(x, t) =

∞∑

k,l=0

(xt)k

k!

(x2/2t)l

l!
=

∞∑

k,l=0

xk+2l tk−l

2l k! l!
, (4a)

=

∞∑

n=−∞

[ ∑

l≥0,−n

x3l+n

2l(n + l)! l!

]
tn ,

{
k − l = n , k = l + n ,
k ≥ 0 ⇒ l ≥ −n .

(4b)

Comparing with the definition of the An(x) as the expansion coefficients of g(x, t):

An(x) =
∑

l≥0,−n

x3l+n

2l(n + l)! l!
. (5)

(At this point the observant student should have noticed that the expansion in powers of
t must extend over positive and negative powers!)

1) Note the typo in the problem: ex(t+x/2t) has an essential singularity at t = 0, whence the
summation must extend over positive and negative powers of t.
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c. Acting with ∂
∂t both on the left-hand-side and on the right-hand-side of

ex(t+x/2t) =
∞∑

n=0

An(x)tn , (6)

we obtain:

(
x − x2

2t2

)
ex(t+2) =

∞∑

n=−∞
An(x) n tn−1 , (7a)

x
∞∑

n=−∞
An(x)tn

︸ ︷︷ ︸
n →m−1

−x2

2

∞∑

n=−∞
An(x)tn−1

︸ ︷︷ ︸
n →m+1

=
∞∑

n=0

nAn(x) tn−1

︸ ︷︷ ︸
n →m

, (7b)

∞∑

m=−∞

[
xAm−1(x) − x2

2
Am+1(x) − mAm(x)

]
tm−1 = 0 . (7c)

As the different powers of t are linearly independent, the quantity in the square brackets
must vanish:

2mAm = 2xAm−1 − x2Am+1 . (8)

Next, acting with ∂
∂x on both sides of (6), we have

(
t +

x

t

)
e−x(t+2) =

∞∑

n=−∞
A′

n(x)tn , (9a)

∞∑

n=−∞
An(x)tn+1

︸ ︷︷ ︸
n→m−1

+x

∞∑

n=−∞
An(x)tn−1

︸ ︷︷ ︸
n→m+1

=

∞∑

n=−∞
A′

n(x)tn

︸ ︷︷ ︸
n→m

, (9b)

∞∑

m=−∞

[
Am−1(x) + xAm+1(x)−A′

m(x)
]
tm = 0 . (9c)

Again, because of the linear independence of different powers of t, we conclude that

A′
m = Am−1 + xAm+1 . (10)

Combining (8) and (10), we obtain:

3xAm−1(x) = 2mAm(x) + xA′
m(x) , (11a)

3x2Am+1(x) = 2xA′
m(x) − 2mAm(x) , (11b)

an alternate set of two (independent) recursion relations satisfied by the Am(x).

d. To obtain a differential equation for An(x) at any given order n, without involving
other orders, is fairly easy. The general strategy is to shift the index in, say, (11b):

3x2Am = 2xA′
m−1 − 2(m−1)Am−1 , (12)
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and then elliminate A′
m−1 using the derivative by x of the (3x)−1-multiple of (11a):

A′
m−1 = 1

3
A′′

m + 2m
3x

A′
m − 2m

3x2 Am , (13)

while Am−1 is elliminated using (11a) itself. We obtain

2x2A′′
m + 2(m+1)xA′

m − (9x2+4m2)Am = 0 . (14)

This can be identified with a a Sturm-Liouville differential equation only in the limited
sense so that

LAm − 9x2Am = 0 , L def
= 2x2 d2

dx2
+ 2(m+1)x

d

dx
− 4m2 . (15)

With the differential operator L itself depending on m (in the coefficient of the 1st deriva-
tive), this permits only the identification of x2 as the weight function and we only have a
single eigenvalue: −9. Clearly, a full cancellation of all m-dependent terms in the 1st and
2nd derivative terms (whence the m-dependent term can be identified as the eigenvalue
term) occurs only for special generating functions, and this is not one of them.

2. The Laplace equation ~∇2V = 0 separates in cylindrical coordinates into three equa-
tions [Arfken, p.473–474]

d2Z

dz2
= `2Z , (16z)

d2Φ

dφ2
= −m2Φ , (16φ)

r
d

dr

(
r
dR

dr

)
= (m2 − `2r2)R , (16r)

where as usual, Z(z) ∝ e±`z and Φ(φ) ∝ e±imφ; allowing m, ` to range over positive and
negative values will include both solutions and the sign in the exponents may be chosen
positive. R(r) is a linear combination of Jm(`r) and Nm(`r). Thus, we have the general
solution for the potential

V (r, φ, z) =





∑
`,m V in

`,m Jm(`r) eimφe`z , for r ≤ a,

∑
`,m

[
V out,J

`,m Jm(`r) + V out,N
`,m Nm(`r)

]
eimφe`z , for r ≥ a.

(17)

Owing to regularity around r = 0, we have omitted Nm(`r) from the solution to be used
inside, as Nm(`r) blows up at r=0.

Next, the boundary conditions. The most general solution is expected to be of the form
V (r, φ, z) = V̊ (r, φ, z) + Vp(r, φ, z), such that e.g. the radial boundary condition becomes

V̊ (a, φ, z) = 0 , and Vp(a, φ, z) = V0 sin(2θ) . (18)

Periodicity in φ ' φ + 2π implies that the m’s must be integers, for both V̊ and Vp.

Note that the only boundary condition we have, V (a, φ, z) = V0 sin(2φ) is independent
of z. Therefore, Vp(r, φ, z) will also have to be independent of z, and for this (“particular”)
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part we must set `=0. Looking back at Eq. (16r), we see that the Bessel equation degen-
erates into the homogeneous equation (all terms scale equally with respect to a rescaling

r → λr), and this equation is solved by the lowest-order terms in the Maclaurin expansion

of Jm(x): the pure powers r±m. Alternatively, this could have been obtained by taking
the. Since r−|m| blows up at r=0, and r+|m| blows up at r → ∞, we must choose:

Vp(r, φ, z) =





∑∞
m=0

(
r
a

)m [
am cos(mφ) + bm sin(mφ)

]
, for r ≤ a,

∑∞
m=0

(
a
r

)m [
cm cos(mφ) + dm sin(mφ)

]
, for r ≥ a.

(19)

By virtue of the balancing powers of a, all constants am, · · ·, dm to have the same dimensions
(units) as Vp(r, φ, z). We have also switched from e±imφ to sin(mφ) and cos(mφ) to

facilitate the subsequent (final) step. The boundary condition (18) is now used to determine

am–dm, by setting r=a and multiplying the second equation in (18) in turn by cos(nφ)
and integrating from 0 to 2π, and then by sin(nφ) and integrating. It is easy to obtain

V0·0 =

∞∑

m=0

[
am π δm,n + bm 0

]
= πan , (20a)

V0·π δ2,n =

∞∑

m=0

[
am 0 + bm π δm,n

]
= πbn , (20b)

V0·0 =

∞∑

m=0

[
cm π δm,n + dm 0

]
= πcn , (20c)

V0·π δ2,n =

∞∑

m=0

[
cm 0 + dm π δm,n

]
= πdn . (20b)

That is, am = 0 = cm, and bm = V0δm,2 = dm, so that

Vp(r, φ, z) =





V0

(
r
a

)2
sin(2φ) , for r ≤ a,

V0

(
a
r

)2
sin(2φ) , for r ≥ a.

(21)

Note that, for r → 0, V ∼ r2 < ∞, and that for r → ∞, (rV d
drV ) ∼ r−4 < ∞.

The first part, V̊ (r, φ, z), vanishes on the cylindrical surface. For the ‘inside’ solution

(where the Nm are ruled out since they diverge for r → 0), we therefore must have

Jm(`a) = 0 , i.e., ` =
αm,L

a
, L = 1, 2, 3, . . . (22)

where αm,L is the Lth zero of Jm(x). For the outside solution, we have that

Jm(`a) +
V out,N

`,m

V out,J
`,m

Nm(`a) = 0 , i.e., ` =
γm,L

a
, L = 1, 2, 3, . . . (23)

which defines another collection of points, γm,L, where this combination of functions van-

ishes; note that the list of γm,L’s depends on the ratio (V out,N
`,m /V out,J

`,m ), and so can only be
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determined pending on this detail of application. Thus,

V̊ (r, φ, z) =





∞∑
m=0,L=1

V in
L,m Jm

(
αm,L

r
a

)
eimφeαm,L

z
a , for r ≤ a,

∞∑
m=0,L=1

Mm

(
γm,L

r
a

)
eimφeγm,L

z
a , for r ≥ a.

(24)

where

Mm

(
γm,L

r
a

) def
= V out,J

L,m Jm

(
γm,L

r
a

)
+ V out,N

L,m Nm

(
γm,L

r
a

)
(25)

is a custom-mixed Bessel function.

This determines the part of the solution that vanishes on the boundary, V̊ (r, φ, z),

in which the constants V in
L,m and V out,J

L,m and V out,N
L,m remain unspecified by the boundary

conditions. Comparing (21) with (24)–(25), we see that the particular part, Vp(r, φ, z)
is much more precisely determined. This is also what is usually required in problems.
The present solution however is meant to show that there always exists a much less well
determined ‘null’ part, V̊ (r, φ, z), which may be added freely to the ‘particular’ solution
without affecting the boundary conditions.

3.a. Since the boundary conditions refer to a sphere, we use shperical coordinates:

1

r2

∂

∂r

[
r2 ∂V

∂r

]
+

1

r2 sin θ

∂

∂θ

[
sin θ

∂V

∂θ

]
+

1

r2

∂2V

∂φ2
−

1

v2

∂2V

∂t2
= 0 . (26)

Following the hint, we write V (~r, t) = H(~r)eiωt and obtain (writing k = ω/v)

1

r2

∂

∂r

[
r2 ∂H

∂r

]
+

1

r2 sin θ

∂

∂θ

[
sin θ

∂H

∂θ

]
+

1

r2

∂2H

∂φ2
+ k2H = 0 . (27)

This now is the well-studeid Helmholtz equation, and direct comparison with Arfken [§ 11
and 12] yields:

V (r, θ, φ, t) =
∑

k,q,s

c+kqsjq(kr)Y s
q (θ, φ)eikvt +

∑

k,q,s

c−kqsjq(kr)Y s
q (θ, φ)e−ikvt . (28)

The mathematical properties of the spherical harmonics Y s
q (θ, φ) require that either q = Q

or q = Q+ 1
2
, with Q an integer, and s = −q, (1−q), · · ·, (q−1), q. The von Neumann

functions, nq(kr), could not be used since they diverge at r → 0, whereas the displacement
of the jelly cannot.

b. Next we impose all boundary conditions that there are. The periodicity requirement in
φ, that is, V (r, θ, φ+2π, t) = V (r, θ, φ, t) and for arbitrary r, θ, t, implies 2) that eis(φ+2π) =
eisφ and so eis2π = 1 or that s = 0,±1,±2,±3 . . .. Therefore, q also must be an integer.
Next, we impose the condition that there is no displacement at the spherical boundary, so
that V (a, θ, φ, t) = 0 for arbitrary θ, φ, t. Thus, it must be that jq(ka) = 0, whereupon ak
must equal one of the zeros (say, the nth) of the qth spherical Bessel function: ak = αq,n,
so that jq(ka) = jq(αq,n) = 0. Finally, since ω = kv, and there is a k for each q, n,

2) Remember that Y s
q (θ, φ) ∝ P s

q (cos θ)eisφ.
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the frequencies of the drum are: ωq,n = αq,n
v
a , and q = 0, 1, 2, 3 . . . while n = 1, 2, 3, . . .

Therefore, the general solution becomes

V (r, θ, φ, t) =

∞∑

n=1

∞∑

q=0

q∑

s=−q

c±n,q,s jq

(
αq,n

r

a

)
P s

q (cos θ)eisφ e±i(αq,nv/a)t . (29)

c. The list of frequencies has already been obtained:

ωq,n = αq,nv/a , q = 0, 1, 2, . . . , n = 1, 2, 3, . . . (30)

Now, the lowest frequency manifestly occurs for q = 0, and we use the fact that j0(kr) =
sin(kr)

kr
, the zeroes of which are α0,n = nπ. The lowest frequency then is

ω0,1 = α0,1
v

a
=

πv

a
. (31)

d. Most of the time it is not possible to hear the type of vibration. This is because the
frequency is determined by q and n, but not by s. So whenever q 6= 0, there are several
distinct modes of vibration, labeled by s = −q, · · ·, q, which all have the same frequency.

For the special cases when q = 0, also s = 0, so that the frequency uniquely determins the
mode of vibration.

e. Upon inserting the non-slip partitions, the boundary conditions are changed, but only
in the φ-direction. Since the partitions divide the jelly into four non-interacting parts,
periodicity is no longer required of V (~r, t). However, since the jelly cannot slip at the
partitions, it must be that V (r, θ, φ, t) = 0 when φ = 0, 2π

N . We may rewrite (29) in
terms of sin(sφ) and cos(sφ), whereupon the cos(sφ) terms are immediately ruled out.
Furthermore,

sin(s2π
N

) = 0 implies s = ±S N
2

, S = 0, 1, 2, 3, . . . (32)

However, recall that max(s) = q, so we have

ωq,n = αq,nv/a , q = N
2 Q, Q = 0, 1, 2, . . . , n = 1, 2, 3, . . . (33)

So, in particular, if say N = 7, we have q = 0, 7
2 , 7, 21

2 , . . ., which then determins the list
of Bessel functions the zeroes of which determine the list of frequencies ωq,n = αq,nv/a.

4. The given function f(x) = 1−(x
π )2 is obviously symmetric, f(−x) = f(x), whereupon

in the general expression for the Fourier transform:

f (x) =
a0

2
+

∞∑

k=1

[
ak cos(kx) + bk sin(kx)

]
, (34)

all bk = 0. The coefficients ak, k = 1, 2 . . . are determined by the integral:

ak =
1

π

∫ π

−π

dx f (x) cos(kx) , (35a)

=
1

π

∫ 0

−π

dx f (x) cos(kx) +
1

π

∫ π

0

dx f(x) cos(kx) , (35b)
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=
2

π

∫ π

0

dx (1 − (
x

π
)2) cos(kx) , (35c)

=
2

π

∫ π

0

dx cos(kx) − 2

π3

∫ π

0

dx x2 cos(kx) , (35d)

=
2

π

[ 1

k
sin(kx)

]π

0
−

2

π3

{[x2

k
sin(kx)

]π

0
−

2

k

∫ π

0

dx x sin(kx)

}
, (35e)

=
2

π
0 − 2

π3

{
0 − 2

k

{[
− x

k
cos kx

]π

0
− 1

k

∫ π

0

dx
(
− cos(kx)

)}}
, (35f)

= − 4

π3k

{
− π

k
(−1)k +

1

k2

[
sin(kx)

]π

0

}
=

4

π2k2
(−1)k , (35g)

Finally, for the case k = 0, the starting integral above was appropriate, but the integrations
by part illegitimate; instead, we have

a0 =
1

π

∫ π

−π

dx f (x) =
2

π

∫ π

0

dx (1 − (
x

π
)2) =

2

π

{[
x − x3

3π2

]π

0

}
=

4

3
. (36)

Thus,

f (x) =
(
x2 −

π2

3

)
=

4

3
+

4

π2

∞∑

k=1

(−1)k

k2
cos(kx) , (37)

which does converge, quadratically.
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