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1st Midterm Exam Solutions (T. Hübsch)

— DISCLAIMER —
The completeness and detail presented herein were by no means ex-
pected in the Student’s solutions for full credit. The additional infor-
mation given here is solely for the Student’s convenience and education.

1.a. The equation dV
dP

= −
(

V
P

)α
separates for all values of α, as it can easily be rewritten

as
dV

V α
= −

dP

P α
. (1)

This can be integrated straightforwardly, to produce

1

1 − α
V 1−α = − 1

1 − α
P 1−α + C , (2)

where C is the constant of integration. Straightforwardly then,

V 1−α + P 1−α

1 − α
= C , (3)

is the algebraic combination of V and P that is constant.

1.b. In the limit α → 1, the left hand side of Eq. (3) becomes of type 1+1
0

, which simply
diverges. Equivalently, upon multiplying Eq. (3) by (1−α) and then taking the limit, one
obtains that 1 + 1 = 0, which is clearly nonsense! Of course, we have assumed that C is
a constant, independent not only of P, V but also of α. Clearly, this latter (implicit and
well hidden 1)!) assumption must have been wrong. Indeed, as a constant of integration,
C must definitely be independent of the variables in the differential equation, P and V .
However, there is no reason why one should be obtaining the same constant for all the
different differential equations, parametrized by the choice of ε, i.e., α.

Rewriting Eq. (3) by using ε
def
= (1−α):

V ε + P ε

ε
= C , (4)

we conclude that C ought to be a function of ε, and have a pole of order 1 at ε=0. Thus,
we write

V ε + P ε

ε
=

c−1

ε
+ c0 + c1ε + . . . , (5)

or

V ε + P ε = c−1 + c0ε + c1ε
2 + . . . . (6)

1) . . .and not expected to be uncovered by the Student under the pressures of the exam. . .



The constants ck, k = −1, 0, 2 . . . are now determined by expanding the left hand side into
a power series in ε and comparing like terms. Thus:

c−1
def
=

[
V ε+P ε

]
ε→0

= 2 , (7a)

c0
def
=

[ d

dε

(
V ε+P ε

)]
ε→0

=
[
V ε ln V +P ε ln P

]
ε→0

= ln PV , (7b)

and so on. Exponentiating Eq. (7b), we obtain

PV = ec0 = const.,

as found from the original equation (1) when α=1. This indeed is the required standard
Boyle’s gas law. In our study of the limit α → 1, this final result occurs as the subleading
term, after the leading term has been ensured to give 1+1 = 2 rather than the nonsensical
1 + 1 = 0 of the näıve limit of our result (3).

2. Before we launch into attempting to solve x3y′′ − 2αxy′ − β(1 + x)y = 0 in a series
form, we check for singular points of the equation, and in particular, for essentially singular
points. Here, P (x) = − 2α

x2 diverges at x = 0, where moreover (x−0)P (x) also diverges.
This, then, is an essential singularity (no need to check Q(x) too; whatever its behavior,
it won’t cure the divergence of P (x).). This is the reason why an attempted solution in
the form of

∑∞
k=0 ckxk+s cannot succeed producing a convergent series. Nevertheless, we

proceed as instructed:

0 = x3y′′ − 2αxy′ − β(1 + x)y ,

=

∞∑

k=0

ck(k+s)(k+s−1)xk+s+1 − 2α

∞∑

k=0

ck(k+s)xk+s

− β

∞∑

k=0

ckxk+s − β

∞∑

k=0

ckxk+s+1 ,

=
∞∑

m=1

cm−1(m+s−1)(m+s−2)xm+s − 2α
∞∑

m=0

cm(m+s)xm+s

− β
∞∑

m=0

cmxm+s − β
∞∑

m=1

cm−1x
m+s ,

= −[2αs + β]c0(s)x
s

+

∞∑

m=1

[
cm−1

[
(m+s−1)(m+s−2) − β

]
−

[
2α(m+s) − β

]
cm

]
xm+s .

(8)

Now we are ready to answer the questions.

2.a. The vanishing of the coefficient of xs guarantees that 2αs+β=0, so that s = −β/2α.
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2.b.The vanishing of the remaining therms then produces the recursion relation (having
used that s = −β/2α)

cm =
(m+s−1)(m+s−2) − β

2αm
cm−1 , m ≥ 1 , (9)

or, shifting back to k = m+1:

ck+1 =
(k+s)(k+s−1) − β

2α(k+1)
ck , k ≥ 0 . (10)

2.c. It should be clear that this series diverges:

1 > lim
k→∞

∣∣∣∣
ck+1x

k+1+s

ckxk+s

∣∣∣∣ = |x| lim
k→∞

∣∣∣∣
(k+s)(k+s−1) − β

2α(k+1)

∣∣∣∣ = |x| lim
k→∞

k2

2k
(11)

is true only for x = 0. Thus, our would-be solution simply makes no sense for x 6= 0, and
for general values of α, β.

2.d.However, if β = (n+s)(n+s+1) for some integer n, the infinite series truncates to a
polynomial of order n since cn+1 = 0, and then ck = 0 for all k > n. Substituting our
earlier result for s, the condition β = (n+s)(n+s+1) reads:

n2 −
(β

α
− 1

)
n −

[
β − β

2α

( β

2α
− 1

)]
= 0 .

For n to be a limiting value for the summation variable k, it must be an integer, and so
α, β must be such that at least one solution of this quadratic equation,

n± =
( β

2α
−

1

2

)
±

√
β +

1

4
,

must be an integer.

3. To use the general formula

y2 = y1

∫
dx

e
∫

dxP (x)

(y1)2
, (12)

we divide the differential equation x2y′′ − 2y = 0 by x2 and identify P (x) ≡ 0. Now,
straightforwardly:

y2 = x2

∫
dx

e0

(x2)2
= x2

∫
dx

x4
= − 1

3
x−1 . (13)

That this (dropping the overall constant − 1
3
) indeed is a solution, we calculate

y′
2 = −x−2 , y′′

2 = +2x−3 , (14)

whereby y2 = x−1 also solves x2y′′ − 2y = 0, and so is the second solution, as sought.
Furthermore, it should be obvious that x2 and x−1 are linearly independent. However, to
prove this, we evaluate the Wronskian:

W [y1, y2]
def
= y1 y′

2 − y′
1 y2 = (x2)(−x−2) − (2x1)(x−1) = −3 6= 0 ; (15)
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the non-vanishing of the Wronsian proves the linear independence of y1, y2.

4.a. Since d
dx

√
1 + x = 1

2
√

1+x
differs by the factor 1

2 from the coefficient of the first deriva-

tive, the equation
√

1 + x
d2fα

dx2
+

1√
1 + x

dfα

dx
+ αfα = 0 (16)

is not self-adjoint as it is. It can be made self-adjoint by (pre-)multiplying all terms with

1

p0
exp

∫
dx

p1

p0
=

1√
1 + x

exp
{ ∫

dx

(1 + x)

}
=

1√
1 + x

exp
{

ln(1 + x)
}

,

=
(1 + x)√

1 + x
=

√
1 + x ,

(17)

upon which the differential equation becomes

(1 + x)
d2fα

dx2
+

dfα

dx
+ α

√
1 + xfα = 0 , (18)

or
d

dx

[
(1 + x)

dfα

dx

]
+ α

√
1 + xfα = 0 . (19)

The differential equation is now indeed in the self-adjoint form.

4.b. In the preceeding equation, d
dx [(1 + x) d

dx ] may be identified as the Sturm-Liouville

operator. This leaves α to be the eigenvalue and
√

1 + x the weight function. As for the

limits, we must verify that the “integrated term”
[
p0W [v∗, u]

]b

a
vanishes.

The Wronskian was calculated, as in Chapter 8, without knowing the solutions u, v.
It is W = W0 exp{−

∫
dxP (x)}, where P (x) = p1(x)/p0(x). For the self-adjoint operator,

p1(x) = p′0(x), so
∫

dxp′0/p0 = ln[p0] and W = W0 exp{− ln[p0(x)]} = W0/p0(x). It is now

easy to see that
[
p0W [v∗, u]

]b

a
= [1]ba ≡ 0 for any two limits a, b — provided the inverse of

p0(x) is well defined for all x ∈ [a, b] so that the calculation of W would make sense. This
indeed is true for x ∈ (−1, 1], and special care may need to be taken at x= − 1.

4.c. Adopting the limits ±1 (recalling that the evaluation at −1 may need to be done
carefully), we can write

〈fα|fβ〉 =

∫ 1

−1

dx
√

1 + x fα(x)fβ(x) = δα,β , (20)

where we have assumed a suitable normalization for fα(x).

5. With the weight function being e−x and for 0 ≤ x ≤ +∞, the orthonormality relation
must be

〈pn|pm〉 def
=

∫ ∞

0

dx e−x pn(x) pm(x)
!
= δn,m . (21)

The Student should have recognized that the Gamma function type integrals,
∫ ∞

0

dx xk e−x = k! (22)
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will be handy.

The equation (21) implies all the conditions that we will need to check; since the
normalizations are not required, we only need the n 6= m cases. We begin with p1 = αx+β,
and request that 〈p1|p0〉 = 0:

〈p1|p0〉 =

∫ ∞

0

dx e−x (αx + β)(1) = (α 1! + β 0!) = (α + β) . (23)

Vanishing of this fixes β = −α and so p1 = α(x − 1).

Then we’ll turn to p2 = γx2 + δx + ε, and request that

〈p2|p0〉 = 0 , 〈p2|p1〉 = 0 . (24)

So, we have

〈p2|p0〉 =

∫ ∞

0

dx e−x (γx2 + δx + ε)(1) =
(
γ 2! + δ 1! + ε 0!

)

= (2γ + δ + ε)
!
= 0 ,

(25)

and

〈p2|p1〉 = α

∫ ∞

0

dx e−x (γx2 + δx + ε)(x − 1)

= α

∫ ∞

0

dx e−x (γx3 + (δ−γ)x2 + (ε−δ)x − ε)

= α
(
γ 3! + (δ−γ)2! + (ε−δ)1!− ε 0!

)

= α(4γ + δ)
!
= 0 ,

(26)

from which δ = −4γ and then (from the previous relation) ε = 2γ, so we obtain p2 =
γ(x2 − 4x + 2).
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