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1st Midterm Exam Solutions (T. Hiibsch)

— DISCLAIMER —

The completeness and detail presented herein were by no means ex-
pected in the Student’s solutions for full credit. The additional infor-
mation given here is solely for the Student’s convenience and education.

1.a. The equation S—g = —(%)a separates for all values of a, as it can easily be rewritten
as
dVv dP
Ve~ pa @
This can be integrated straightforwardly, to produce
1 1
VT s PO (2)

where C' is the constant of integration. Straightforwardly then,
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l—«

= C, (3)

is the algebraic combination of V' and P that is constant.

1.b.In the limit a — 1, the left hand side of Eq. (3) becomes of type %, which simply
diverges. Equivalently, upon multiplying Eq. (3) by (1—«) and then taking the limit, one
obtains that 1 4+ 1 = 0, which is clearly nonsense! Of course, we have assumed that C' is
a constant, independent not only of P,V but also of a. Clearly, this latter (implicit and
well hidden 1)!) assumption must have been wrong. Indeed, as a constant of integration,
C must definitely be independent of the variables in the differential equation, P and V.
However, there is no reason why one should be obtaining the same constant for all the

different differential equations, parametrized by the choice of ¢, i.e., a.
Rewriting Eq. (3) by using e def (1—a):
VE _|_ P€
€

= C, (4)

we conclude that C' ought to be a function of €, and have a pole of order 1 at e=0. Thus,
we write Ve L pe
+ c_
= el—l—c()—l—cle—l—..., (5)

€
or

VE4 P = ¢y +coetered +... . (6)

1) .. .and not expected to be uncovered by the Student under the pressures of the exam. ..



The constants ¢, k = —1,0,2. .. are now determined by expanding the left hand side into
a power series in € and comparing like terms. Thus:

e & [verp] =2, (7a)
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and so on. Exponentiating Eq. (7b), we obtain
PV = e% = const.,

as found from the original equation (1) when a=1. This indeed is the required standard
Boyle’s gas law. In our study of the limit @ — 1, this final result occurs as the subleading
term, after the leading term has been ensured to give 1+ 1 = 2 rather than the nonsensical
1 4+ 1 =0 of the naive limit of our result (3).

2. Before we launch into attempting to solve x3y” — 2axy’ — B(1 + z)y = 0 in a series
form, we check for singular points of the equation, and in particular, for essentially singular
points. Here, P(z) = —2% diverges at « = 0, where moreover (z—0)P(z) also diverges.
This, then, is an essential singularity (no need to check Q(z) too; whatever its behavior,
it won’t cure the divergence of P(x).). This is the reason why an attempted solution in
the form of ZZO:() crx®T* cannot succeed producing a convergent series. Nevertheless, we
proceed as instructed:

0 =2y’ —2axy’ — B(1+2z)y ,

= Z cr(k+s)(k+s—1)zF T — 2q Z cp(k+s)hte
k=0 k=0
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= Z Cm—1(m~+s—1)(m+s—2)z""° — 2« Z Con (A-8) 2" (8)
m=1 m=0
-0 Z Cmx’™ Z Cm—1x" 7,
= —[2as + fleo(s)x®

+ Z [cm_l [(m+s—1)(m+s—2) — 8] — [2a(m+s) — f] Cm] Fmts

m=1
Now we are ready to answer the questions.
2.a. The vanishing of the coefficient of 2° guarantees that 2as+/5=0, so that s = —3/2a.
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2.b. The vanishing of the remaining therms then produces the recursion relation (having
used that s = —(3/2aq)
(m+s—1)(m+s-2) — 3

m: m—1 » 215 9
c Y- Crn—1 m 9)

or, shifting back to k = m+1:
(k+s)(k+s—1) = 3

= k>0. 10
Ck+1 2a(kt1) Ck » = (10)
2.c. It should be clear that this series diverges:
k+1+s 2
.|k .| (k+s)(k+s—1) = p .k
1> 1 = 1 = lim — 11
e e Rl ’ 2a(hil) ol lim op (D)

is true only for x = 0. Thus, our would-be solution simply makes no sense for = # 0, and
for general values of «, 3.

2.d. However, if § = (n+s)(n+s+1) for some integer n, the infinite series truncates to a
polynomial of order n since ¢,4+1 = 0, and then ¢, = 0 for all £k > n. Substituting our
earlier result for s, the condition 8 = (n+s)(n+s+1) reads:

- (G- - (5] o

For n to be a limiting value for the summation variable k, it must be an integer, and so
a, # must be such that at least one solution of this quadratic equation,

B 1 1
me = (50 -3) E\B+7
3. To use the general formula

efde(w)
Y2 = ylfde’ (12)

we divide the differential equation z2y” — 2y = 0 by 22 and identify P(x) = 0. Now,
straightforwardly:

must be an integer.

e dzx _
Y2 = $2/d5’7(w2)2 = -fEQ F = —%il? 1 . (13)

1

5) indeed is a solution, we calculate

That this (dropping the overall constant —

vo= a7,y =427 (14)

whereby y, = 7! also solves z2y” — 2y = 0, and so is the second solution, as sought.
Furthermore, it should be obvious that 2% and z~! are linearly independent. However, to
prove this, we evaluate the Wronskian:

Wiy, ye) = yiyh—yiye = (@%)(—272) — (2e') (=) = =3 # 0;  (15)
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the non-vanishing of the Wronsian proves the linear independence of y1, ys.

4.a. Since %\/ l+z =3 \/Lr—x differs by the factor % from the coefficient of the first deriva-
tive, the equation

dgfa 1 dfa
V1 = 1
+x = \/ﬁ g +afa=0 (16)

is not self-adjoint as it is. It can be made self-adjoint by (pre-)multiplying all terms with

1 P1 1 / dx 1
— der — = — = In(1+ ,
ov [arn = ool [ 75} = semew{mara}

(R "
+x
= = 1 + s
vi+zx v
upon which the differential equation becomes
d? fa
(1+x) +—+0z\/1—|—:1:fa =0, (18)

da?

or

ddw [(1+ )d";)‘] tavitaf, = 0. (19)

The differential equation is now indeed in the self-adjoint form.

4.b.In the preceeding equation, £ [(1+ z)<L] may be identified as the Sturm-Liouville
operator. This leaves o to be the eigenvalue and /1 + = the weight function. As for the
limits, we must verify that the “integrated term” [pOW[U*, “HZ vanishes.

The Wronskian was calculated, as in Chapter 8, without knowing the solutions u, v.
Itis W = WO exp{— [ dzP(z)}, where P(x) = p1(z)/po(z). For the self-adjoint operator,
p1(x) = py(x), so [dzph/po = Infpo] and W = Wy exp{— In[po(z)]} = Wo/po(z). It is now

easy to see that [pOW[v ,u]]l; = [1]% = 0 for any two limits a, b — provided the inverse of
po(x) is well defined for all x € [a, b] so that the calculation of W would make sense. This
indeed is true for € (—1, 1], and special care may need to be taken at x= — 1.

4.c. Adopting the limits +1 (recalling that the evaluation at —1 may need to be done
carefully), we can write

alfs) = /_ Ao VIFT ful) fo(e) = B (20)

where we have assumed a suitable normalization for f, (x).

5. With the weight function being e~* and for 0 < z < +o00, the orthonormality relation
must be

(Pnlpm) = /Omdxe_mpn(x)pm(m) = On,m - (21)

The Student should have recognized that the Gamma function type integrals,
o0
/ de z¥e™ = k! (22)
0
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will be handy.

The equation (21) implies all the conditions that we will need to check; since the
normalizations are not required, we only need the n # m cases. We begin with p; = ax+ 03,

and request that (pi|pg) = 0:

(pIpo) = / dr e (ax + B)(1) = (@l + B0 = (a+ 5) . (23)
0
Vanishing of this fixes 8 = —a and so p; = a(z — 1).
Then we’ll turn to py = yx2 + dx + €, and request that
(p2lpo) = 0, (p2lp1) = 0. (24)
So, we have
(p2|po) = / dz e ™ (ya? 4 6z + €)(1) = <fy 20+ 011+ eO!)
0 (25)
=(2y+0+¢€) =0 )
and -
el =a [ doe ™ (a4 dx Gz - 1)
0
= a/ dz e ™ (v + (6—v)x? + (e—=0)z — €)
0 (26)
=alv3'+ (0—)2! 4+ (e—d)1! — 60!>
= a4y +9) 20,
from which § = —4v and then (from the previous relation) € = 27, so we obtain p; =
y(z? — 4z + 2).



