Howard University

WASHINGTON, D.C. 20059

DEPARTMENT OF PHYSICS AND ASTRONOMY
(202)-806-5830 (FAX)

Mathematical Methods II
The Final Exam

17th April '98.

Instructor: T.Hübsch
(Student name and ID) This is an "open Textbook (Arfken), open lecture notes and handouts" take-home exam, due by 5:00 p.m. of Monday, 27th April '98. For full credit, show all your work. If you cannot complete one part of a calculation, a clear description of the procedure/method will still earn you partial credit. No collaboration or consultation is allowed, and you may rely only on results from the textbook, lecture notes and class-handouts.

1. For the inhomogeneous differential equation $x^{3} y^{\prime \prime}+\left(x^{2}+2\right) y^{\prime}-\alpha x y=x$:
a. Find each singular point and whether it is essential or nonessential.
b. Find a power-series solution of the homogeneous equation and specify the possible choices of α for which this solution makes sense.
c. Find the associated self-adjoint homogeneous equation, determine the range $x_{1} \leq$ $x \leq x_{2}$ within which the associated differential operator is self-adjoint and specify the orthogonality relation for the solutions y_{α}.
d. Specify the singularity structure expected of the "second" homogeneous solution, as defined in Arfken's (8.127).
e. Find a low integral value of α for which the particular solution of the above inhomogeneous equation is a low-degree polynomial; find this particular solution.
(Recall: if y_{p} is a particular solution and $y_{h, 1}, y_{h, 2}$ two independent solutions of the homogeneous part, the general solution of the inhomogeneous equation is $y_{p}+C_{1} y_{h, 1}+C_{2} y_{h, 2}$.)
2. Solve the diffusion equation $\frac{\partial}{\partial t} T=k \vec{\nabla}^{2} T$ by separating variables, using standard solutions and fitting the boundary conditions. $T(\vec{r}, t)$ is confined within a quarter-spherical cavity (1st and 2nd octant) and vanishes on: the flat vertical walls at $\varphi=0$ and $\varphi=180^{\circ}$, the flat horizontal floor at $\theta=90^{\circ}$, and the curved dome at $r=a$, respectively.
3. Using Laplace transformation, solve the system of differential equations

$$
\begin{array}{ll}
\frac{\mathrm{d}}{\mathrm{~d} t} C_{1}=-C_{1}+2 C_{2}, & C_{1}(0)=0 \\
\frac{\mathrm{~d}}{\mathrm{~d} t} C_{2}=C_{1}-C_{2}+2 C_{3}, & C_{2}(0)=0 \\
\frac{\mathrm{~d}}{\mathrm{~d} t} C_{3}=+2 C_{2}+C_{3}, & C_{3}(0)=1
\end{array}
$$

subject to the specified initial conditions.

