Using the Laplace Transform
A fairly general formula for the f(t) < f(s) := Z{f(t)} relation:
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Make sure you check it completely!
Consider then the differential system
C1(t) = Co(t) — Cy(t), 3)
Ca(t) = —Ci(t) + Ca(t) — Ca(t), 4
C3(t) = Ca(t) — C3(1). (5)
The Laplace transform of this system is
561 (S) — C1 (O) = Ez(t) — 61(1’), (6)
Séz(s) — Cz(O) = —61(1’) + éz(t) — 63(t), (7)
563(3) — C1 (O) = Ez(t) — 63(1’), (8)
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so that the determinant of the system is
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With this, the solution for C; is
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so that Cy(t) = 1[e~* 4 cos(t) — sin(t)].



The solution for C, is
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so that C(t) = —sin(#).

Finally, the solution for Cj is
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and Cs(t) = 3| — e~ ! + cos(t) —sin(t)].
The resulting “flow” in the (Cy, Cy, C3)-space is depicted below:
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It starts far right, at (1,0,0), and ends up quickly but asymptotically approaching the tilted loop.
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