HOWARD UNIVERSITY

WASHINGTON, D.C. 20059

DEPARTMENT OF PHYSICS AND ASTRONOMY
(202)-806-6245 (Main Office)
(202)-806-5830 (FAX)

Mathematical Methods II
Quizz,

18th April '97. Solutions

Consider solving the integral equation

$$
\begin{equation*}
f(x)=\int_{a}^{b} \frac{\mathrm{~d} t \varphi(t)}{(x-t)^{\alpha}} \tag{*}
\end{equation*}
$$

by identifying the kernel, $K(x, t)=(x-t)^{-\alpha}$, with the product $w(t) g(t, x)$ where $g(t, x)$ is the generating function for the functions $F_{k}(t)$:

$$
g(t, x)=\sum_{k} F_{k}(t) x^{k}
$$

which satisfy an orthogonality relation:

$$
\int_{a}^{b} \mathrm{~d} t w(t) F_{k}^{*}(t) F_{\ell}(t)=\delta_{k, \ell}
$$

If this identification is possible, we'll have:

$$
\begin{aligned}
f(x) & =\int_{a}^{b} \mathrm{~d} t \varphi(t)\left[w(t) \sum_{k} F_{k}(t) x^{k}\right] \\
& =\int_{a}^{b} \mathrm{~d} t\left[\sum_{\ell} c_{\ell} F_{\ell}^{*}(t)\right]\left[w(t) \sum_{k} F_{k}(t) x^{k}\right] \\
& =\sum_{\ell, k} c_{\ell} x^{k} \int_{a}^{b} \mathrm{~d} t w(t) F_{\ell}^{*}(t) F_{k}(t) \\
& =\sum_{\ell, k} c_{\ell} x^{k} \delta_{\ell, k}=\sum_{k} c_{k} x^{k}
\end{aligned}
$$

Here we have used that the collection of functions $F_{k}(t)$-and therefore also of their conjugates, $F_{k}^{*}(t)$, is a complete set, so that any function, including $\varphi(t)$, can be expanded as was done on the second line. This result give the known function $f(x)$ in terms of a power series. The latter being unique, we can determine the coefficients from the Taylor series formula:

$$
c_{k}=\frac{1}{k!} f^{(k)}(0) \stackrel{\text { def }}{=} \frac{1}{k!}\left[\frac{\mathrm{d}^{k}}{\mathrm{~d} x^{k}} f(x)\right]_{x=0}
$$

whereupon

$$
\varphi(t)=\sum_{k} \frac{1}{k!} f^{(k)}(0) F_{k}^{*}(t)
$$

It now remains to find out if such a collection of functions $F_{k}(t)$ exists.

To begin with, assume that $w(t)=1$, and note that

$$
\begin{aligned}
K(x, t) & =(x-t)^{-\alpha}=(-t)^{-\alpha}(1-x / t)^{-\alpha}, \\
& =(-t)^{-\alpha} \sum_{k=0}^{\infty}\binom{-\alpha}{k} \frac{x^{k}}{t^{k}}=\sum_{k=0}^{\infty}\binom{-\alpha}{k} \frac{e^{-i \alpha \pi}}{t^{k+\alpha}} x^{k},
\end{aligned}
$$

where $\binom{-\alpha}{k} \stackrel{\text { def }}{=} \frac{(-\alpha)!}{(-\alpha-k)!k!}=\frac{(-\alpha)(-\alpha-1) \cdots(-\alpha-k+1)}{k!}$, and $(-1)^{-\alpha}=\left(e^{i \pi}\right)^{-\alpha}=e^{-i \alpha \pi}$. So, if $w(t)=1$, then $F_{k}(t)=\binom{-\alpha}{k} \frac{e^{-i \alpha \pi}}{t^{k+\alpha}}$. Notice that these functions are homogeneous (simple powers of the argument). Therefore, straightforward calculation yields

$$
t \frac{\mathrm{~d}}{\mathrm{~d} t} t \frac{\mathrm{~d}}{\mathrm{~d} t} F_{k}(t)=(k+\alpha)^{2} F_{k}(t)
$$

That is, the $F_{k}(t)$ satisfy the Sturm-Liouville type equation

$$
\frac{\mathrm{d}}{\mathrm{~d} t}\left[t \frac{\mathrm{~d} F_{k}}{\mathrm{~d} t}\right]-\frac{(k+\alpha)^{2}}{t} F_{k}(t)=0
$$

where the eigenvalue is $-(k+\alpha)^{2}$ and the weight function is $w(t)=\frac{1}{t}$.
We therefore try $K(x, t)=w(t) g(t, x)$, i.e., $g(t, x)=t K(x, t)$, so that

$$
\begin{aligned}
g(t, x) & =t(x-t)^{-\alpha}=t(-t)^{-\alpha}(1-x / t)^{-\alpha} \\
& =t(-t)^{-\alpha} \sum_{k=0}^{\infty}\binom{-\alpha}{k} \frac{x^{k}}{t^{k}}=\sum_{k=0}^{\infty}\binom{-\alpha}{k} \frac{e^{-i \alpha \pi}}{t^{k+\alpha-1}} x^{k} .
\end{aligned}
$$

Modifying a little our earlier tentative result, this implies that

$$
F_{k}(t)=\binom{-\alpha}{k} \frac{e^{-i \alpha \pi}}{t^{k+\alpha-1}} .
$$

The precise determination of compatible limits (if such exist!) a, b in the original integral equation $\left(^{*}\right)$ is done so that the orthogonality relation (\#) would hold; this is left as an exercise for the diligent Student.

