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Mathematical Methods II 16th April ’97.
Quizz, Solutions

For the differential equation

∂2f (x, y)

∂x2
− 2

∂2f (x, y)

∂x∂y
+

∂2f(x, y)

∂y2
+ 9 f(x, y) = 0 , (∗)

Q.a. find the x-Fourier transform.
A.a. Applying the Fourier transform to the equation means multiplying with the kernel,
eikxx, and integrating over −∞<x<∞:

∫ ∞

−∞
dx eikxx

[∂2f(x, y)

∂x2
− 2

∂2f(x, y)

∂x∂y
+

∂2f (x, y)

∂y2
+ 9 f (x, y)

]
= 0 ,

which, upon using Arfken’s 1) (15.41):

(−ikx)2f̃(kx, y) − 2(−ikx)
∂f̃(kx, y)

∂y
+

∂2f̃ (kx, y)

∂y2
+ 9 f̃(kx, y) = 0 .

Q.b. find the y-Fourier transform.
A.b. Applying the Fourier transform to the equation means multiplying with the kernel,
eikyy, and integrating over −∞<y<∞:

∫ ∞

−∞
dy eikyy

[∂2f(x, y)

∂x2
− 2

∂2f(x, y)

∂x∂y
+

∂2f (x, y)

∂y2
+ 9 f (x, y)

]
= 0 ,

which, analogously to the previous case yields:

∂2f̃(x, ky)

∂x2
− 2(−iky)

∂f̃ (x, ky)

∂x
+ (−iky)2f̃(x, ky) + 9 f̃(x, ky) = 0 .

Q.c. find the (double) x, y-Fourier transform.
A.c. Applying the double Fourier transform to the equation means multiplying with both
kernels, eikkk and eikyy, and integrating over both −∞<y<∞ and −∞<y<∞:

∫ ∞

−∞
dx eikxx

∫ ∞

−∞
dy eikyy

[∂2f (x, y)

∂x2
− 2

∂2f(x, y)

∂x∂y
+

∂2f(x, y)

∂y2
+ 9 f (x, y)

]
= 0 ,

which, combining the previous two cases, yields:

(−ikx)2
˜̃
f (kx, ky) − 2(−ikx)(−iky)

˜̃
f(kx, ky) + (−iky)2

˜̃
f (kx, ky) + 9

˜̃
f (kx, ky)

= −
[
k2

x − 2kxky + k2
y − 9

] ˜̃
f (kx, ky)

= −
[
(kx − ky)2 − 9

] ˜̃
f (kx, ky) = 0 .

1) and following the convention of his Eq. (15.37), rather than mine, given in class.



Q.d. State the relation between kx and ky (the inverse variables for x and y, respectively)
as implied by the double Fourier transform.

A.d. Since
˜̃
f (kx, ky) = 0 is the trivial solution, we are bound to conclude that a nontrivial

solution exists only if (kx−ky)2 = 9, i.e., that

ky = kx ± 3 . (♦)

Q.e. Write down the general solution to Eq. (∗), as obtained by the double-inverse trans-
form, and implementing the condition from part d.
A.e. Now, the general solution, f(x, y) is of course, the double inverse transform of
˜̃
f (kx, ky):

f(x, y)
def
= 1

2π

∫ ∞

−∞
dkx e−ikxx

∫ ∞

−∞
dky e−ikyy ˜̃

f (kx, ky) .

Since
˜̃
f(kx, ky) itself has never been determined, this is simply a general double Fourier

(continuous, integral) expansion, where the values of the undetermined function
˜̃
f (kx, ky)

play the roles of the Fourier coefficients.

To implement the condition (♦), we may stick into the integral a linear combination
of two delta functions—one for each of the signs:

f(x, y)
def
= 1

2π

∫ ∞∫

−∞

dkxdky e−ikxxe−ikyy ˜̃
f (kx, ky)

[
c+δ(ky−kx−3) + c−δ(ky−kx+3)

]
,

= 1
2π

∞∫

−∞

dkx e−ikxx
[
c+e−i(kx+3)y ˜̃

f(kx, kx+3) + c−e−i(kx−3)y ˜̃
f (kx, kx−3)

]
,

= 1
2π

∞∫

−∞

dkx e−ikx(x+y)
[
c+e−3iy ˜̃

f(kx, kx+3) + c−e−3iy ˜̃
f(kx, kx−3)

]
.

The solution is thus determined in the form of a double (continuous, integral) Fourier

expansion. The ‘coefficient’ function
˜̃
f(kx, ky) is left undetermined so far, as no boundary

conditions were given.



Q. Solve the system of differential equations with initial conditions:

dA(t)

dt
= αA(t) + βB(t) ,

dB(t)

dt
= γA(t) ,

A(0) = 1 ,

B(0) = 0 ,

using the Laplace transform.

A. Applying the Laplace transform on the system of equations, denoting a(s)
def
= L {A(t)},

b(s)
def
= L {B(t)}, we have

s a(s) − A(0+) = L
{

dA(t)

dt

}
= αa(s) + βb(s) ,

s b(s) −B(0+) = L
{

dB(t)

dt

}
= γa(s) ,

where in the far-left equations, we have used Arfken’s (15.123). Now we implement the
boundary conditions given above, and rewrite the system equating the far-left and far-right
parts:

(s−α)a(s) − β b(s) = 1 ,

−γ a(s) + s b(s) = 0 .

The second equation implies that b(s) = γ a(s)/s, whereupon the first equation yields

(s−α)a(s) −
β γ

s
a(s) = 1 ,

i.e.,

a(s) =
s

s2−αs−βγ
and b(s) =

γ

s2−αs−βγ
.

This can be rewritten as

a(s) =
σ

σ2−κ2
+

α

2κ

κ

σ2−κ2
and b(s) =

γ

κ

κ

σ2−κ2
.

where σ
def
= s − 1

2α and κ2 def
= 1

4α2+βγ. Here we have manipulated the solutions for a(s)
and b(s) to resemble some of the entries in Arfken’s Table 15.12 (p.915). Subject to the
limitation of σ > κ, i.e., s > 1

4
α2+ 1

2
α+βγ, we then have (using entries 6. and 7. from said

table, and operation 4. from Table 15.1, on p.914):

A(t) = e
1
2 αt cosh

[
(1
4
α2+βγ)t

]
+

2αe
1
2 αt

α2+4βγ
sinh

[
(1
4
α2+βγ)t

]
,

and

B(t) =
4γ e

1
2 αt

α2+4βγ
sinh

[
( 1
4
α2+βγ)t

]
.


