HOWARD UNIVERSITY
 WASHINGTON, D.C. 20059

DEPARTMENT OF PHYSICS AND ASTRONOMY
$(202)-806-6245($ Main Office)
$(202)-806-5830($ FAX $)$
Mathematical Methods II

16th April '97.
Solutions
Quizz,
For the differential equation

$$
\begin{equation*}
\frac{\partial^{2} f(x, y)}{\partial x^{2}}-2 \frac{\partial^{2} f(x, y)}{\partial x \partial y}+\frac{\partial^{2} f(x, y)}{\partial y^{2}}+9 f(x, y)=0 \tag{*}
\end{equation*}
$$

Q.a. find the x-Fourier transform.
A.a. Applying the Fourier transform to the equation means multiplying with the kernel, $e^{i k_{x} x}$, and integrating over $-\infty<x<\infty$:

$$
\int_{-\infty}^{\infty} \mathrm{d} x e^{i k_{x} x}\left[\frac{\partial^{2} f(x, y)}{\partial x^{2}}-2 \frac{\partial^{2} f(x, y)}{\partial x \partial y}+\frac{\partial^{2} f(x, y)}{\partial y^{2}}+9 f(x, y)\right]=0
$$

which, upon using Arfken's ${ }^{1)}$ (15.41):

$$
\left(-i k_{x}\right)^{2} \widetilde{f}\left(k_{x}, y\right)-2\left(-i k_{x}\right) \frac{\partial \widetilde{f}\left(k_{x}, y\right)}{\partial y}+\frac{\partial^{2} \widetilde{f}\left(k_{x}, y\right)}{\partial y^{2}}+9 \widetilde{f}\left(k_{x}, y\right)=0
$$

Q.b. find the y-Fourier transform.
A.b. Applying the Fourier transform to the equation means multiplying with the kernel, $e^{i k_{y} y}$, and integrating over $-\infty<y<\infty$:

$$
\int_{-\infty}^{\infty} \mathrm{d} y e^{i k_{y} y}\left[\frac{\partial^{2} f(x, y)}{\partial x^{2}}-2 \frac{\partial^{2} f(x, y)}{\partial x \partial y}+\frac{\partial^{2} f(x, y)}{\partial y^{2}}+9 f(x, y)\right]=0
$$

which, analogously to the previous case yields:

$$
\frac{\partial^{2} \widetilde{f}\left(x, k_{y}\right)}{\partial x^{2}}-2\left(-i k_{y}\right) \frac{\partial \widetilde{f}\left(x, k_{y}\right)}{\partial x}+\left(-i k_{y}\right)^{2} \widetilde{f}\left(x, k_{y}\right)+9 \widetilde{f}\left(x, k_{y}\right)=0
$$

Q.c. find the (double) x, y-Fourier transform.
A.c. Applying the double Fourier transform to the equation means multiplying with both kernels, $e^{i k_{k} k}$ and $e^{i k_{y} y}$, and integrating over both $-\infty<y<\infty$ and $-\infty<y<\infty$:

$$
\int_{-\infty}^{\infty} \mathrm{d} x e^{i k_{x} x} \int_{-\infty}^{\infty} \mathrm{d} y e^{i k_{y} y}\left[\frac{\partial^{2} f(x, y)}{\partial x^{2}}-2 \frac{\partial^{2} f(x, y)}{\partial x \partial y}+\frac{\partial^{2} f(x, y)}{\partial y^{2}}+9 f(x, y)\right]=0
$$

which, combining the previous two cases, yields:

$$
\begin{aligned}
& \left(-i k_{x}\right)^{2} \widetilde{\widetilde{f}}\left(k_{x}, k_{y}\right)-2\left(-i k_{x}\right)\left(-i k_{y}\right) \widetilde{\tilde{f}}\left(k_{x}, k_{y}\right)+\left(-i k_{y}\right)^{2} \widetilde{\widetilde{f}}\left(k_{x}, k_{y}\right)+9 \widetilde{\widetilde{f}}\left(k_{x}, k_{y}\right) \\
& =-\left[k_{x}^{2}-2 k_{x} k_{y}+k_{y}^{2}-9\right] \widetilde{\tilde{f}}\left(k_{x}, k_{y}\right) \\
& =-\left[\left(k_{x}-k_{y}\right)^{2}-9\right] \widetilde{\tilde{f}}\left(k_{x}, k_{y}\right)=0
\end{aligned}
$$

${ }^{1)}$ and following the convention of his Eq. (15.37), rather than mine, given in class.
Q.d. State the relation between k_{x} and k_{y} (the inverse variables for x and y, respectively) as implied by the double Fourier transform.
A.d. Since $\widetilde{\widetilde{f}}\left(k_{x}, k_{y}\right)=0$ is the trivial solution, we are bound to conclude that a nontrivial solution exists only if $\left(k_{x}-k_{y}\right)^{2}=9$, i.e., that

$$
k_{y}=k_{x} \pm 3
$$

Q.e. Write down the general solution to Eq. (*), as obtained by the double-inverse transform, and implementing the condition from part d .
A.e. Now, the general solution, $f(x, y)$ is of course, the double inverse transform of $\widetilde{\widetilde{f}}\left(k_{x}, k_{y}\right):$

$$
f(x, y) \stackrel{\text { def }}{=} \frac{1}{2 \pi} \int_{-\infty}^{\infty} \mathrm{d} k_{x} e^{-i k_{x} x} \int_{-\infty}^{\infty} \mathrm{d} k_{y} e^{-i k_{y} y} \widetilde{\widetilde{f}}\left(k_{x}, k_{y}\right) .
$$

Since $\widetilde{\widetilde{f}}\left(k_{x}, k_{y}\right)$ itself has never been determined, this is simply a general double Fourier (continuous, integral) expansion, where the values of the undetermined function $\widetilde{\widetilde{f}}\left(k_{x}, k_{y}\right)$ play the roles of the Fourier coefficients.

To implement the condition (\diamond), we may stick into the integral a linear combination of two delta functions - one for each of the signs:

$$
\begin{aligned}
f(x, y) & \stackrel{\text { def }}{=} \frac{1}{2 \pi} \iint_{-\infty}^{\infty} \mathrm{d} k_{x} \mathrm{~d} k_{y} e^{-i k_{x} x} e^{-i k_{y} y} \\
& \left.=\frac{\widetilde{f}}{2 \pi} \int_{x}, k_{y}\right)\left[c_{+} \delta\left(k_{y}-k_{x}-3\right)+c_{-} \delta\left(k_{y}-k_{x}+3\right)\right] \\
& \mathrm{d} k_{x} e^{-i k_{x} x}\left[c_{+} e^{-i\left(k_{x}+3\right) y} \widetilde{\widetilde{f}}\left(k_{x}, k_{x}+3\right)+c_{-} e^{-i\left(k_{x}-3\right) y} \widetilde{\widetilde{f}}\left(k_{x}, k_{x}-3\right)\right] \\
& =\frac{1}{2 \pi} \int_{-\infty}^{\infty} \mathrm{d} k_{x} e^{-i k_{x}(x+y)}\left[c_{+} e^{-3 i y} \widetilde{\widetilde{f}}\left(k_{x}, k_{x}+3\right)+c_{-} e^{-3 i y} \widetilde{\widetilde{f}}\left(k_{x}, k_{x}-3\right)\right]
\end{aligned}
$$

The solution is thus determined in the form of a double (continuous, integral) Fourier expansion. The 'coefficient' function $\widetilde{\widetilde{f}}\left(k_{x}, k_{y}\right)$ is left undetermined so far, as no boundary conditions were given.
Q. Solve the system of differential equations with initial conditions:

$$
\begin{array}{ll}
\frac{\mathrm{d} A(t)}{\mathrm{d} t}=\alpha A(t)+\beta B(t), & A(0)=1 \\
\frac{\mathrm{~d} B(t)}{\mathrm{d} t}=\gamma A(t), & B(0)=0
\end{array}
$$

using the Laplace transform.
A. Applying the Laplace transform on the system of equations, denoting $a(s) \stackrel{\text { def }}{=} \mathscr{L}\{A(t)\}$, $b(s) \stackrel{\text { def }}{=} \mathscr{L}\{B(t)\}$, we have

$$
\begin{aligned}
& s a(s)-A\left(0^{+}\right)=\mathscr{L}\left\{\frac{\mathrm{d} A(t)}{\mathrm{d} t}\right\}=\alpha a(s)+\beta b(s) \\
& s b(s)-B\left(0^{+}\right)=\mathscr{L}\left\{\frac{\mathrm{d} B(t)}{\mathrm{d} t}\right\}=\gamma a(s)
\end{aligned}
$$

where in the far-left equations, we have used Arfken's (15.123). Now we implement the boundary conditions given above, and rewrite the system equating the far-left and far-right parts:

$$
\begin{aligned}
(s-\alpha) a(s)-\beta b(s) & =1 \\
-\gamma a(s)+s b(s) & =0
\end{aligned}
$$

The second equation implies that $b(s)=\gamma a(s) / s$, whereupon the first equation yields

$$
(s-\alpha) a(s)-\frac{\beta \gamma}{s} a(s)=1
$$

i.e.,

$$
a(s)=\frac{s}{s^{2}-\alpha s-\beta \gamma} \quad \text { and } \quad b(s)=\frac{\gamma}{s^{2}-\alpha s-\beta \gamma} .
$$

This can be rewritten as

$$
a(s)=\frac{\sigma}{\sigma^{2}-\kappa^{2}}+\frac{\alpha}{2 \kappa} \frac{\kappa}{\sigma^{2}-\kappa^{2}} \quad \text { and } \quad b(s)=\frac{\gamma}{\kappa} \frac{\kappa}{\sigma^{2}-\kappa^{2}} .
$$

where $\sigma \stackrel{\text { def }}{=} s-\frac{1}{2} \alpha$ and $\kappa^{2} \stackrel{\text { def }}{=} \frac{1}{4} \alpha^{2}+\beta \gamma$. Here we have manipulated the solutions for $a(s)$ and $b(s)$ to resemble some of the entries in Arfken's Table 15.12 (p.915). Subject to the limitation of $\sigma>\kappa$, i.e., $s>\frac{1}{4} \alpha^{2}+\frac{1}{2} \alpha+\beta \gamma$, we then have (using entries 6. and 7. from said table, and operation 4. from Table 15.1, on p.914):

$$
A(t)=e^{\frac{1}{2} \alpha t} \cosh \left[\left(\frac{1}{4} \alpha^{2}+\beta \gamma\right) t\right]+\frac{2 \alpha e^{\frac{1}{2} \alpha t}}{\alpha^{2}+4 \beta \gamma} \sinh \left[\left(\frac{1}{4} \alpha^{2}+\beta \gamma\right) t\right]
$$

and

$$
B(t)=\frac{4 \gamma e^{\frac{1}{2} \alpha t}}{\alpha^{2}+4 \beta \gamma} \sinh \left[\left(\frac{1}{4} \alpha^{2}+\beta \gamma\right) t\right] .
$$

