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The following notes are meant to complement,
rather than supplant the material given in Ref. [1].

1 Introduction

We are interested in solutions to the Helmholz equation[
∇⃗2

(D) + k2
]
ψ(r⃗(D)) = 0, (1.1)

where r⃗ and ∇⃗2
(D) are the position vector and the Laplacian operator, respectively, in D-dimensional space.

In Cartesian coordinate systems,

r⃗(D) :=

D∑
i=1

xi êi = x êx + y êy + z êz + . . . , (1.2)

∇⃗2
(D) :=

D∑
i=1

d2

dxi2
=

d2

dx2
+

d2

dy2
+

d2

dz2
+ . . . (1.3)

It is frequently convenient to use (hyper-)spherical coordinates1 (r, θ1, · · · , θD−2, ϕ):

r =

√∑D
i=1(x

i)2, xD = r cos θ1, (1.4)

θ1 = arctan

(√∑D−1
i=1 (xi)2

xd

)
xD−1 = r sin θ1 cos θ2, (1.5)

...
... (1.6)

θj = arctan

(√∑D−j
i=1 (xi)2

xD−j+1

)
xD−j = r sin θ1 sin θ2 cos θj+1, (1.7)

...
... (1.8)

θD−2 = arctan

(√
(x1)2 + (x2)2

x3

)
x2 = r sin θ1 · · · sin θD−2 cosϕ, (1.9)

ϕ = ATan(x1, x2) x1 = r sin θ1 · · · sin θD−2 sinϕ. (1.10)

Note that all the numerators in the argument of the arctan functions are positive by definition, so that the
arguments take on values (−∞,+∞), corresponding to which the computed angles take values θi ∈ [0, π]

for i = 1, · · · , D−2, just as needed. This succession would imply the assignment ϕ = θD−1 = arctan(x
1

x2 ) for

1 See <http://en.wikipedia.org/wiki/Hypersphere> for more info, in a slightly different notation.
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the last angle, which is however doubly-valued since x1

x2 = −x1

−x2 . To remedy this, we’ve used the function:

ATan(x, y) :=


arctan(y/x) for 0 ≤ x, y,

π + arctan(y/x) for x < 0,

2π + arctan(y/x) for y < 0 ≤ x.
(1.11a)

ATan(x, y) ∈ [0, 2π] arctan
(
y
x

)
∈
[
− π

2 ,+
π
2

]
, covering twice

(1.11b)

to define the azimuthal angle ϕ, which therefore takes on twice as many values as do the θi. It is not hard
to verify by direct integration of the volume element, obtained by changing variables from

∏
i dx

i, that
these ranges of the angles give the correct volume, without double-counting.

In such (hyper-)spherical coordinates, r⃗(D) = r êr and

∇⃗2
(D)f(r⃗(D)) =

1

rD−1

[ d
dr

(
rD−1df(r⃗(D))

dr

)]
− 1

r2
L 2

(D) f(r⃗(D)), (1.12)

where L 2
(D) is a 2nd order partial differential operator but only with respect to the angular variables,

θ1, · · · , θD−2, ϕ, and may be interpreted as the square of the angular momentum operator. For the lowest
few values of D, we have:

L 2
(1) = 0, (1.13a)

L 2
(2) = −

∂2

∂ϕ2
, (1.13b)

L 2
(3) = −

1

sin θ

[ ∂
∂θ

(
sin θ

∂

∂θ

)]
− 1

sin2 θ

∂2

∂ϕ2
. (1.13c)

...
...

In fact, L 2
(2) is the square of a 2-dimensional scalar operator and L 2

(3) the square of a 3-dimensional
vector operator: inD dimensions, L 2

(D) is the so-called tensor-square of the angular momentum rank-(D−2)
tensor operator, most easily represented in Cartesian coordinates2 :

[L(D) ]i1···i(D−2)
:= − i εi1···i(D−2)jk g

kl xj
∂

∂xl
. (1.14)

2 The choice of the overall constant “−i” conforms to the convention of [1, pp. 201–202]. Other sources may omit the negative
sign; mathematical texts (unconcerned with physical applications) may also omit the “i.”
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Indeed, for D = 2:

L(2) = −i εij δjk xi
∂

∂xk
=

[x y ]
[

0 −i
i 0

][
∂
∂x
∂
∂y

]
=

[x y ]
[
−i ∂

∂y

i ∂
∂x

]
= − i

[
x
∂

∂y
− y ∂

∂x

]
. (1.15)

Let’s convert this into spherical coordinates:

=
[ r cosϕ r sinϕ ]

[
0 i

−i 0

][
∂r
∂x

∂ϕ
∂x

∂r
∂y

∂ϕ
∂y

][
∂
∂r
∂
∂ϕ

]
, (1.16)

= i

{
[r cosϕ]

[∂r
∂y

∂

∂r
+
∂ϕ

∂y

∂

∂ϕ

]
− [r sinϕ]

[∂r
∂x

∂

∂r
+
∂ϕ

∂x

∂

∂ϕ

]}
, (1.17)

= i

{
[r cosϕ]

[
sinϕ

∂

∂r
+
(cosϕ

r

) ∂
∂ϕ

]
− [r sinϕ]

[
cosϕ

∂

∂r
+
(
− sinϕ

r

) ∂
∂ϕ

]}
, (1.18)

= i(cos2 ϕ+ sin2 ϕ)
∂

∂ϕ
= i

∂

∂ϕ
. (. . . Whew!) (1.19)

But, don’t take my word for it: do the math! The Cartesian representation of the D=3 case is given in
Eq. (3.7) below, while the spherical coordinate representation is [1, p. 202]:

L⃗(3) = −i(r⃗×∇⃗) = i
[
êθ

1

sin θ

∂

∂ϕ
− êϕ

∂

∂θ

]
(1.20)

which seems so much simpler. . . until one realizes that êθ and êϕ are not constant, and hide some of the
angular dependence:

êθ = cos θ cosϕ êx + cos θ sinϕ êy − sinϕ êz, (1.21)

êϕ = − sinϕ êx + cosϕ êy. (1.22)

The spherical coordinate version it is much more complicated for D > 3, and is not given here.

The Helmholz equation (1.1) therefore becomes:

1

rD−1

[ d
dr

(
rD−1df(r⃗(D))

dr

)]
− 1

r2
L 2

(D) f(r⃗(D)) + k2f(r⃗(D)) = 0, (1.23)

or, after multiplying through by r2,

1

rD−3

[ d
dr

(
rD−1df(r⃗(D))

dr

)]
+ k2r2f(r⃗(D)) = L 2

(D) f(r⃗(D)), (1.24)

which easily separates the radial coordinate, r, from the angular ones. We look for f(r⃗(D)) in the factorized
form f(r⃗(D)) = RQ(r)YQ(θ1, · · · , θD−2, ϕ) and proceed as usual:

1

rD−3

[ d
dr

(
rD−1dRQ(r)

dr

)]
+ (kr)2RQ(r) = QRQ(r), (1.25)

L 2
(D) YQ(θ1, · · · , θD−2, ϕ) = QYQ(θ1, · · · , θD−2, ϕ). (1.26)

The general solution will then be of the form f(r⃗(D)) =
∑

Q
RQ(r)YQ(θ1, · · · , θD−2, ϕ), where the Q-sum

is over all values of Q allowed by boundary conditions and other restrictions, such as periodicity in the
ϕ-angle.

We now turn to analyze (1.25) in § 2, and will then return to (1.26) in § 3.
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2 B L T → The Bessel Equations’ Hierarchy

The radial equation may be rewritten in the following equivalent formats:

1

rD−1

[ d
dr

(
rD−1dRQ(r)

dr

)]
+ k2RQ(r)−

Q

r2
RQ(r) = 0, (2.1a)

d2RQ(r)

dr2
+
D−1
r

dRQ(r)

dr
+ k2RQ(r)−

Q

r2
RQ(r) = 0, (2.1b)

r2
d2RQ(r)

dr2
+ (D−1)rdRQ(r)

dr
+ (k r)2RQ(r)−QRQ(r) = 0, (2.1c)[ d

dr

(
rD−1dRQ(r)

dr

)]
+ k2rD−1RQ(r)−QrD−3RQ(r) = 0. (2.1d)

It should be clear from the version (2.1c) that the change of variables z = kr absorbes k in a rescaling of
r, whereupon one frequently writes RQ(kr) in place of RQ(r). The last version, Eq. (2.1d) makes it clear
that this differential equation may be identified as a Sturm-Liouville equation in two very different ways.

(I): In the first (& standard) case, we fix Q, and write:

LQ =
[ d
dr

(
rD−1 d

dr

)]
−QrD−3, p(r) = rD−1, q(r) = −rD−3, (2.2)

λ = +k2, w(r) = rD−1, (2.3)

from which it follows that the Bessel equation (2.1d) may be written as

LQ[RQ(kr)] + k2 rD−1RQ(kr) = 0, (2.4)

which is a Sturm-Liouville equation and so implies the orthogonality condition∫ b

a
dr rD−1 R∗

Q(kr)RQ(k
′r) = Nk δk,k′ , (2.5)

provided limits a, b are chosen so that[
R∗

Q(kr) r
D−1dRQ(k

′r)

dr

]b
a

= 0, ∀k, k′. (2.6)

(II): Alternatively (& non-standard) , we may fix k instead, and write:

Lk =
[ d
dr

(
rD−1 d

dr

)]
+ k2rD−1, p(r) = q(r) = rD−1, (2.7)

λ = −Q, w(r) = rD−3, (2.8)

from which it follows that the Bessel equation (2.1d) may be written as

Lk[RQ(kr)]−QrD−3RQ(kr) = 0, (2.9)

which is a Sturm-Liouville equation and so implies the orthogonality condition∫ b

a
dr rD−3 R∗

Q(kr)RQ′(kr) = NQ δQ,Q′ , (2.10)
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provided limits a, b are chosen so that[
R∗

Q(kr) r
D−1dRQ′(kr)

dr

]b
a

= 0, ∀Q,Q′. (2.11)

It should be clear that Eq. (1.26) may—and in fact does—lead to a similar orthogonality condition,
fixing Q as the eigenvalue of L 2

(D). For this reason, the second option, (2.7)–(2.11) is used rarely, if ever.
In turn, the first option, (2.2)–(2.6), is in standard use.

The Bessel equations, derived above for arbitrary D ≥ 1, thus form a semi-infinite sequence:

(there’s no Q for D=1)
d2R(1)(kr)

dr2
+ k2R(1)(kr) = 0, D = 1 ; (2.12)

1

r

[ d
dr

(
r
dR

(1)
m (kr)

dr

)]
+
[
k2 − m2

r2

]
R(1)

m (kr) = 0, D = 2 ; (2.13)

1

r2

[ d
dr

(
r2

dR
(1)
ℓ (kr)

dr

)]
+
[
k2 − ℓ(ℓ+1)

r2

]
R

(1)
ℓ (kr) = 0, D = 3 ; (2.14)

and so on. We have used the standard notations for Q = m2 in D = 2 and Q = ℓ(ℓ+1) in D = 3; this
follows from the nature of L 2

(2) and L 2
(3), and will be examined subsequently.

Note that L 2
(1) ≡ 0 as there are no angular variables, so that there is no Q-term in (2.12); whence

we wrote ∅ in place of Q. Also, this is the probably the best known of the equations in the sequence,
being solved by a linear combination of sin(kr) and cos(kr), or alternatively, of eikr and e−ikr. In a sense
then, the ‘cylindrical Bessel functions’ of the first and second kind, Jm(kr) and Nm(kr), that solve the
equation (2.13) and the ‘spherical Bessel functions’ of the first and second kind, jℓ(kr) and nℓ(kr), that
solve the equation (2.14) are then generalizations of sin(kr) and cos(kr), respectively.

In fact, this relationship is quite solid. Consider substituting

R(r) = rα P (r), (2.15)

dR(r)

dr
= rα

[dP (r)
dr

+
α

r
P (r)

]
, (2.16)

d2R(r)

dr2
= rα

[d2P (r)
dr2

+
2α

r

dP (r)

dr
+
α(α−1)
r2

P (r)
]
, (2.17)

into Eq. (1.25), we find

rα
[d2P (r)

dr2
+

2α+D−1
r

dP (r)

dr
+
(
k2 − Q− α(D + α−2)

r2

)
P (r)

]
= 0. (2.18)

As rα → 0 vanishes only at r = 0 if α > 0 or at r →∞ if α < 0, we obtain:

d2P (r)

dr2
+

2α+D−1
r

dP (r)

dr
+
(
k2 − Q− α(D + α−2)

r2

)
P (r) = 0. (2.19)

From this result, you can see how to pick α so as to hop from any D-dimensional Bessel equation to any
other D′-dimensional one.

2.1 A Few Special Cases

Case A: Choose α = −D−1
2 , whereupon Eq. (2.19) turns into:

d2P

dr2
+
[
k2 − Q+ (D−1)(D+3)/4

r2

]
P = 0. (2.20)
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For Q = − (D−1)(D−3)
4 , this simplifies further, into:

P ′′(r) + k2P (r) = 0, ⇒ P (r) = A sin(kr + φ), A, φ = const. (2.21)

Going back to Eq. (1.25), we find that its special case:

1

rD−1

[ d
dr

(
rD−1dR

dr

)]
+
[
k2 − (D−1)(D−3)

4r2

]
R = 0, (2.22)

is indeed solved by R(r) = Ar(1−D)/2 sin(kr + φ).

Case B: On the other hand, selecting α = 1− D
2 , Eq. (2.19) turns into:

d2P

dr2
+

1

r

dP

dr
+
[
k2 − 4Q+ (2−D)2

4r2

]
P = 0, (2.23)

which is solved by P (r) = AJµ(kr) + BNµ(kr), where µ = ±
√
Q+ 1

4(D−2)2, and Jµ(kr) and Nµ(kr) are
the cylindrical Bessel functions of the first and second kind, respectively. Therefore, Eq. (2.19) is solved by

R(r) = r
2−D
2
[
AJµ(kr) +BNµ(kr)

]
, µ = ±

√
Q+ 1

4(D−2)2, (2.24)

in terms of cylindrical Bessel functions.

Case C: Alternatively, with α = −D−3
2 , Eq. (2.19) turns into:

d2P

dr2
+

2

r

dP

dr
+
[
k2 − 4Q+ (D−1)(D−3)

4r2

]
P = 0, (2.25)

which is solved by P (r) = a jℓ(kr) + b nℓ(kr), where ℓ = ±
√
Q+ 1

4(D−2)2 −
1
2 , so that Eq. (2.19) is also

solved by

R(r) = r
3−D
2
[
a jℓ(kr) + b nℓ(kr)

]
, ℓ = ±

√
Q+ 1

4(D−2)2 −
1
2 , (2.26)

in terms of spherical Bessel functions. Clearly, we thus have the identity[
AJµ(kr) +BNµ(kr)

]
=
√
r
[
a jµ− 1

2
(kr) + b nµ− 1

2
(kr)

]
, (2.27)

relating spherical Bessel functions to the cylindrical ones.

In fact, we have the general relationship:

R(D)
µ (kr) =

1√
r
R

(D−1)

µ+ 1
2

(kr), D = 2, 3, 4, . . . (2.28)

— ⋆ —

Case k=0: In this special case, Eq. (2.19) becomes homogeneous in r:

1

rD−1

[ d
dr

(
rD−1dRQ(r)

dr

)]
− Q

r2
RQ(r) = 0, (2.29)

and so is solved by pure powers. Indeed, by substituting RQ(r) = rβ, we obtain:

RQ(r) = C+ r
β+ + C− r

β− , β± =
2−D

2
±
√

1
4(D−2)2 +Q. (2.30)

Since the k → 0 limiting case of the Bessel equations (2.19) are the homegeneous equations (2.29),
this implies the k → 0 asymptotic behavior:

Jµ(kr) ∼ rµ, Nµ(kr) ∼ r−µ, D = 2 ; (2.31)

jℓ(kr) ∼ rℓ, nℓ(kr) ∼ r−(ℓ+1), D = 3 ; (2.32)

and so on.
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3 The Angular Part

When separating the radial part from the angular one, Eq. (1.1) produces Eqs. (1.25) on one hand, and
the corresponding angular equations (1.26) on the other. The separating constant, Q, turns out to acquire
the following values

D = 1 : Q ≡ 0, D = 2 : Q = m2, D = 3 : Q = ℓ(ℓ+1), · · · Q(D) = n(n+D−1), (3.1)

where m, ℓ, n are (typically, see below) integers or proper half-integers: 2m, 2ℓ, 2n ∈ Z. We now turn to
motivate this in dimensions D = 2, 3.

3.1 B L T→Two-dimensional Space & Trigonomentry

Using Eq. (1.13b), we have that

∂2

∂ϕ2
Y (ϕ) +m2 Y (ϕ), ⇒ Y (ϕ) = Aeimϕ = A

(
cos(mϕ) + i sin(mϕ)

)
. (3.2)

If there are no ϕ-boundaries and ϕ ∈ [0, 2π] with ϕ ≡ ϕ+2π, one typically requires single-valued periodicity,
Y (ϕ+ 2π)

!
= Y (ϕ). This implies:(

Aeim(ϕ+2π) = Ae2πim eimϕ
)

!
= Aeimϕ : e2πim

!
= 1 ⇒ m ∈ Z, (3.3)

However, in quantum mechanics we also need those double-valued functions (spinors) which satisfy Y (ϕ+

2π) = −Y (ϕ), in which case

A sin
(
m(ϕ+ 2π) + φ

)
= A sin(mϕ+ φ) cos(2mπ) +A cos(mϕ+ φ) sin(2mπ),

= (−1)2mA sin(mϕ+ φ) = −A sin(mϕ+ φ) : m ∈ (Z+ 1
2), (3.4)

Rotations in D=2-dimensional space form the SO(2) ≃ U(1) algebra, and this is seen to distinguish be-
tween the tensorial representations of the SO(2) group, with m ∈ Z, and the spinorial representations
of Spin(2), the double-cover of SO(2): being double-valued under a 2π rotation, spinors are not faith-
fulrepresentations of SO(2), but only of Spin(2). The 1st order differential operator L(2) generates the
SO(2) group, the elements of which can be written as gα := exp{iαL(2)}, with α ≡ α + 2π being a real
angle, parametrizing the rotations in D = 2-dimensional space.

We will see that a suitable generalization of these facts prevails for higher D also.

3.2 B L T→Three-dimensional Space & Spherical Harmonics

In D = 3-dimensional space, the partial differential equation (1.26) may be separated into the system:

1

sin θ

d

dθ

(
sin θ

dΘ

dθ

)
+
(
Q− m2

sin2 θ

)
Θ = 0, (3.5)

d2Φ

dϕ2
+m2Φ = 0, (3.6)

where the first is the associated Legendre equation, and the second the trigonometric equation. Now,
Eq. (1.14) dictates that L 2

(3) be the magnitude-square of a vector differential operator. This operator is
most easily written in the Cartesian coordinate system, where gkl = δkl, so

Lx := i
(
y
∂

∂z
− z ∂

∂y

)
, Ly := i

(
z
∂

∂x
− x ∂

∂z

)
, Lz := i

(
x
∂

∂y
− y ∂

∂x

)
. (3.7)
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Note that all three Li’s are homogeneous, of degree 0, that is, invariant under homoteties (x, y, z) →
(λx, λy, λz), λ ∈ R∗. This implies that all three Li’s are independent of r: they are functions of θ, ϕ, and
1st order differential operators with respect to θ, ϕ only3 . Note that the definitions (3.7) ensure that the
Li’s are all Hermitian as differential operators:∫

V
d3r⃗ f∗(r⃗)

[
Li g(r⃗)

]
= +

∫
V
d3r⃗

[
Li f(r⃗)

]∗
g(r⃗), (3.8)

provided f(r⃗), g(r⃗) vanish at ∂V .

The Cartesian representation (3.7) is, however, by far the easiest one to prove by direct calculations
that [

Lj , Lk

]
= i εjkl Ll. (3.9)

That is, besides spanning a 3-dimensional vector space, the three Li’s in fact span a 3-dimensional algebra
(vector space equipped with a closed product), called the angular momentum algebra, or the algebra of the
SO(3) group. The relationship with the SO(3) group means that the group elements of this SO(3) may be
written as gα⃗ := exp{iαjLj}, where the three real angles, α1, α2, α3 (formally assembled into a 3-vector,
α⃗, as if its Cartesian coordinates), parametrize the rotations in d = 3-dimensional space—such as the Euler
angles, familiar from the classical mechanics of rigid bodies. Most of the details of the algebra (3.9) have
been discussed in § 4.3 of Ref. [1], but we recapture here the salient points.

Firstly, note that if two operators, Â and B̂ are to have a simultaneous system of eigenvectors{
Â |a, b⟩ = a |a, b⟩ ,

B̂ |a, b⟩ = b |a, b⟩ ,
(3.10)

they better commute, since{
B̂Â |a, b⟩ = B̂a |a, b⟩ = aB̂ |a, b⟩ = ab |a, b⟩ ,

ÂB̂ |a, b⟩ = Âb |a, b⟩ = bÂ |a, b⟩ = ab |a, b⟩ ,
(3.11)

the difference of which yields [
Â , B̂

]
|a, b⟩ = 0. (3.12)

Since no two of the three Li’s commute, the eigenvectors of any one of the Li’s cannot be eigenvectors
also of either of the other two. However, an elementary iteration of Eq. (3.9) implies that[

Li , L 2
]
= 0, i = x, y, z, L 2 := L 2

x + L 2
y + L 2

z . (3.13)

The geometrical interpretation of this is “obvious”: (1) the Li’s generate rotations, (2) L 2 is the magni-
tude-square of the vector L⃗ , and (3) magnitudes of vectors are invariant under rotations. The algebraic
consequence, however, is that L 2 together with any one of Li can serve—and indeed forms the maximal
commuting set of operators: it turn out that, in dimension d = 3, no operator can be constructed from
the three Li that would commute with both L 2 and one chosen from among Li, say Lz, and not be a
function f(L 2,Lz).

Following the standard approach, we select L3 = Lz to pair with L 2, and define the basis4 of their
simultaneous eigenvectors to satisfy {

L 2 |Q,m⟩ = Q |Q,m⟩ ,

L3 |Q,m⟩ = m |Q,m⟩ .
(3.14)

3 But, don’t take my word for it: follow through the change of coordinates yourself!
4 A basis is a maximal and complete collection of elements of a vector space, which is also orthonormalizable with respect to a

scalar product if such is defined.
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We then combine Lx with Ly into

L± := Lx ± iLy,
(
L+

)†
= L−, (3.15)

and explore their action on |Q,m⟩. To that end, we first rewrite Eq. (3.9) and Eq. (3.13) as[
L3,L±

]
= ±L±,

[
L+,L−

]
= 2L3, (3.16)[

L 2,Li

]
= 0, i = +,−, 3, L 2 = L∓L± + L 2

3 ±L3. (3.17)

Since Li,L 2 are differential operators with respect to the angles θ, ϕ, the vectors |Q,m⟩ are in fact func-
tions YQ,m(θ, ϕ) of those angles. For such vectors, we introduce the scalar (“dot”) product

⟨Q′,m′|Q,m⟩ :=
∫ π

0
sin θ dθ

∫ 2π

0
dϕ
[
YQ′,m′(θ, ϕ)

]∗
YQ,m(θ, ϕ), (3.18)

and use Gram-Schmidt orthogonalization [1, § 5.2] to organize these functions into an orthogonal collec-
tion, — which we also normalize so that:

⟨Q′,m′|Q,m⟩ = δQ′,Q δm′,m. (3.19)

Abbreviating ⟨Q,m| · · · |Q,m⟩ as ⟨ · · · ⟩, we have that

Q = ⟨L 2⟩ = ⟨Q,m| L 2 |Q,m⟩ = ⟨Q,m| Q |Q,m⟩ = Q
(
⟨Q,m|Q,m⟩ = 1

)
, (3.20)

= ⟨L 2
x + L 2

y + L 2
z ⟩ = ⟨L 2

x ⟩+ ⟨L 2
y ⟩+ ⟨L 2

z ⟩, (3.21)

=
∥∥Lx |Q,m⟩

∥∥2 + ∥∥Lx |Q,m⟩
∥∥2 +m2 ≥ m2, (3.22)

= ⟨L∓L±⟩+ ⟨L 2
3 ⟩ ± ⟨L3⟩, (3.23)

=
∥∥L± |Q,m⟩

∥∥2 +m2 ±m =
∥∥L± |Q,m⟩

∥∥2 +m(m±1). (3.24)

Since
∥∥L± |Q,m⟩

∥∥2 ≥ 0, we have obtained that

Q ≥ m(m±1). (3.25)

Next, we inquire whether L± |Q,m⟩ is an element of the basis (3.14). To that end, we need to see if
the L± |Q,m⟩’s are themselves eigenvectors of L 2 and L3:

L 2
(
L± |Q,m⟩

)
=
[
L 2 , L±

]︸ ︷︷ ︸
=0

+L±L 2 |Q,m⟩ = L±Q |Q,m⟩

= Q
(
L± |Q,m⟩

)
, (3.26)

L3

(
L± |Q,m⟩

)
=
[
L3 , L±

]︸ ︷︷ ︸
=±L±

+L±L3 |Q,m⟩ =
(
±L± + L±m

)
|Q,m⟩

= (m± 1)
(
L± |Q,m⟩

)
, (3.27)

Thus, L 2 does not change |Q,m⟩, whereas L+ raises (and L− lowers) the eigenvalue m in |Q,m⟩. There-
fore, it must be that

L± |Q,m⟩ ∝ |Q,m±1⟩ ,
(
L± |Q,m⟩

)
= N±(Q,m) |Q,m±1⟩ . (3.28)
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Now, from Eq. (3.25), it follows that:

m > 0 ; Q
{≥m(m+1),

≥m(m−1),
⇒ Q ≥ m(m+ 1), (3.29)

m < 0 ; Q
{≥−|m|(−|m|+1),

≥−|m|(−|m|−1),
⇒ Q ≥ −|m|(−|m| − 1) = |m|(|m|+ 1), (3.30)

so that the last inequality (3.30) in fact applies to both m < 0 and m > 0: Q ≥ |m|(|m|+1).

So, denote ℓ def
= max(|m|), and consider applying L+ on |Q, ℓ⟩:

L+ |Q, ℓ⟩ = N+ |Q, ℓ+1⟩ ≡ 0, since m ≤
(
ℓ

def
= max(|m|)

)
. (3.31)

Applying L− to this equation, we obtain:

0 = L−L+ |Q, ℓ⟩ =
[
L 2 −L 2

3 −L3

]
|Q, ℓ⟩ =

[
Q− ℓ2 − ℓ

]
|Q, ℓ⟩ = [Q− ℓ(ℓ+ 1)] |Q, ℓ⟩ . (3.32)

Avoiding the trivial solution (|Q, ℓ⟩ = 0) implies that Q = ℓ(ℓ+1).

Hereafter, we rename |Q,m⟩ → |ℓ,m⟩.

Since L±,L3,L 2 are the only operators that operate on the |ℓ,m⟩, it follows that iterations of
Eq. (3.28) must exhaust the possible |ℓ,m⟩’s for any fixed ℓ. Therefore,

−ℓ ≤ m ≤ +ℓ, ℓ := max
(
|m|
)
. (3.33)

Furthermore, since iterations of Eq. (3.28) provide the only way to change m, which happens in unit
increments, it follows that

△m ∈ Z. (3.34)

Since ℓ def
= max(|m|), the allowed values of m must range, in unit increments, between −ℓ and ℓ — starting

from one and reaching the other, we have that

ℓ− (−ℓ) ∈ Z, ⇒ 2ℓ ∈ Z. (3.35)

That is, we have just proven that ℓ can only be an integer or a proper half-integer. Also, Eqs. (3.33)
and (3.34) imply that m takes on 2ℓ+1 values, for any fixed ℓ.

This is the announced generalization of the case in D = 2-dimensional space.

We can now also determine (the magnitude of) the normalization constants N±(Q,m):

|N+|2 =
∥∥N+ |ℓ,m+ 1⟩

∥∥ =
∥∥L+ |ℓ,m⟩

∥∥2, (3.36)

= ⟨L−L+⟩ = ⟨L 2 −L 2
3 −L3⟩ = ℓ(ℓ+1)−m(m+1) ; (3.37)

N+ =
√
ℓ(ℓ+1)−m(m+1). (3.38)

By the same token, considering however ∥L− |ℓ,m⟩ ∥2 instead:

N− =
√
ℓ(ℓ+1)−m(m−1). (3.39)

Therefore, for each 2ℓ ∈ Z, we have that the vector space spanned by the eigenbasis{
|ℓ,m⟩ : m = −ℓ,−(ℓ−1), · · · , (ℓ−1), ℓ

}
(3.40)
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is the (2ℓ+1)-dimensional representation5 of Spin(3) if ℓ ∈ Z, or Spin(3), if ℓ ∈ Z+1
2 . That is to say, given

a choice of ℓ ∈ 1
2Z, there exists a vector space

Vℓ := {rℓ,m |ℓ,m⟩ , (rℓ,−ℓ, · · · , rℓ,+ℓ) ∈ R2ℓ+1}, (3.41)

such that SO(3)-rotations act by:

L 2 |ℓ,m⟩ = ℓ(ℓ+1) |ℓ,m⟩ , (3.42)

Lx |ℓ,m⟩ = 1
2

√
ℓ(ℓ+1)−m(m+1) |ℓ,m+1⟩+ 1

2

√
ℓ(ℓ+1)−m(m−1) |ℓ,m−1⟩ , (3.43)

Ly |ℓ,m⟩ = 1
2i

√
ℓ(ℓ+1)−m(m+1) |ℓ,m+1⟩ − 1

2i

√
ℓ(ℓ+1)−m(m−1) |ℓ,m−1⟩ , (3.44)

Lz |ℓ,m⟩ = m |ℓ,m⟩ . (3.45)

Thus, each Vℓ ≃ R2ℓ+1 is a (2ℓ+1)-dimensional vector space, for all ℓ ∈ 1
2Z. It may be parametrized by the

2ℓ+1 components “|ℓ,m⟩,” with |m| ≤ ℓ, and is a (2ℓ+1)-dimensional representation of Spin(3).

I trust this is clearly easier than trying to solve Eq. (3.5), or determining how

L⃗ = iêθ
1

sin θ

∂

∂θ
− iêϕ

∂

∂ϕ
, (3.46)

L± = ±e±iϕ
( ∂
∂θ
± i cot θ ∂

∂ϕ

)
(3.47)

act on the spherical harmonics:

Y m
ℓ (θ, ϕ) := (−1)m

√
2ℓ+1

4π

(ℓ−m)!

(ℓ+m)!
Pm
ℓ (cos θ) eimϕ, (3.48)

and how L± reconstruct all the Y m
ℓ (θ, ϕ)’s from Y 0

ℓ (θ, ϕ) =
√

2ℓ+1
4π Pℓ(cos θ). Clearly (I should hope),

there is a perfect, 1–1 correspondence between the spherical harmonics and the formal eigenvectors:
Y m
ℓ (θ, ϕ)

1−1←→ |ℓ,m⟩.

3.3 Higher Dimensions

Now, Eq. (3.5) is, for m = 0 and with ξ = cos θ1, becomes

(1− ξ2)d
2Θ1

dξ 2
− (2D−1) ξ dΘ1

dξ
+ ℓ(ℓ+D−2)Θ1 = 0, (3.49)

known as the Gegenbauer differential equation. As it turns out, this equation is solved in terms of the usual
associated Legendre polynomials (of both the 1st and the 2nd kind) [2]:

Θ1(ξ) = (ξ2 − 1)
µ
2
[
C1 P

µ
ν (ξ) + C2Q

µ
ν (ξ)

]
, ν := ℓ+ D−3

2 , µ := 3−D
2 , (3.50)

just as the higher dimensional Bessel equations are all solved in terms of the cylindrical ones (2.24).

This hierarchy is related to the fact that SO(D)—or, more accurately its algebra, so(D)—has ⌊D+1
2 ⌋

algebraically independent Casimir operators, for D ≤ 2: mutually commuting operators constructed from
5 The groups SO(3) and Spin(3) share the same algebra, and the ℓ ∈ Z representations (3.40). However, when ℓ ∈ Z+ 1

2 ,
a rotation by 2π is not equivalent to the identity: exp{iφLz} | 12 ,± 1

2 ⟩ = exp{±iφ/2} | 12 ,± 1
2 ⟩, so exp{2iπLz} | 12 ,± 1

2 ⟩ =
exp{±iπ} | 12 ,± 1

2 ⟩ = − | 12 ,± 1
2 ⟩: spinors return to themselves only upon a 4π rotation. The group Spin(3) is then defined to be a

double-cover of SO(3), precisely as the 2-leaved Riemann sheet of values of
√
z had to be defined for the C-valued

√
-function of

z ∈ C.
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the generators of the group. For n = 1, so(1) = ∅, and SO(1) = Z2 is a discrete group, so that no L ’s exist.
For d > 3, L is a tensor operator, of rank (D−2). Then, L 2 := ∥L ∥2 is still one of the Casimir operators,
but a specific choice of the remaining ⌊D−1

2 ⌋ ones is less obvious. Correspondingly, there is a varied choice
of Casimir eigenvectors, |ℓ, νi, · · · , νn,m⟩, where n = ⌊D−3

2 ⌋, accompanied by correspondingly various
relations between the eigenvalues ℓ, νi, · · · , νn,m.

Moreover, the choice of ℓ (and so, ultimately the dimension of the basis) no longer determines the
basis |ℓ, νi, · · · , νn,m⟩ up to linear transformations, and so no longer determines uniquely the represen-
tation of SO(D): for any d ≥ 4, there do exist choices of ℓ with different bases |ℓ, νi, · · · , νn,m⟩, i.e.,
same-dimensional but different representations of SO(D).

Finaly, with growing D, the choices of ℓ become increasingly more sparse: whereas SO(3) has a
representation for every (2ℓ+1) ∈ Z≥0, this is not true for SO(D) with D ≥ 4.

Consequently, different methods seem preferable—and have been used—when trying to list all the
possible representations of SO(D), for D ≥ 4. Most often, however, they do use the obvious chain of
imbeddings SO(D) ⊃ SO(D−1) ⊃ · · · ⊃ SO(3) ⊃ SO(2).

4 B L T → Legendre Equation

Consider again

1

sin θ

d

dθ

(
sin θ

dΘ

dθ

)
+
(
ℓ(ℓ+1)− m2

sin2 θ

)
Θ = 0, (4.1)

d2Φ

dϕ2
+m2Φ = 0, (4.2)

and change variables: x := cos θ, so d
dθ = dx

dθ
d
dx = − sin θ d

dx = −
√
1− cos2 θ d

dx = −
√
1−x2 d

dx in (4.1):

1√
1−x2

(
−
√

1−x2 d

dx

)(√
1−x2

(
−
√
1−x2dΘ

dx

))
+
(
ℓ(ℓ+1)− m2

1−x2
)
Θ = 0, (4.3a)

d

dx

(
(1−x2)dΘ

dx

)
+
(
ℓ(ℓ+1)− m2

1−x2
)
Θ = 0, (4.3b)

(1−x2)d
2Θ

dx2
− 2x

dΘ

dx
+
(
ℓ(ℓ+1)− m2

1−x2
)
Θ = 0. (4.3c)

Clearing the denominators, we see that this can be solved by the method of series, but we will not do so
here. Instead, we digress:

4.1 Generating Function

The Green’s function for the Laplacian in 3-dimensional space is 1
|r⃗−r⃗ ′| , which motivates us to consider

|⃗a− b⃗| = a2+b2−2ab cos θ, where a = |⃗a|, b = |⃗b| and θ is the angle between a⃗ and b⃗. Assume that |⃗a| > |⃗b|,
so that t := b

a < 1, and we can write

1

|⃗a− b⃗|
=

1

|⃗a|
g0(x, t), g0(x, t) :=

(
1 + t2 − 2xt

)−1/2
, x = cos θ, t = |⃗b|

|⃗a| . (4.4)

Since we are often concerned with derivatives of 1
|r⃗−r⃗ ′| , we start consider

gm(x, t) :=
(
1 + t2 − 2xt

)m−1/2
, m ∈ Z. (4.5)
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Treating t(t−2x) as a small parameter, we have

gm(x, t) :=
(
1 + t2 − 2xt

)m−1/2
=

∞∑
r=0

(
m−1

2

r

)
(t2 − 2xt)r, (4.6)

=
∞∑
r=0

(
m−1

2

r

) r∑
s=0

(
r

s

)
(−1)st2(r−s)(2xt)s =

∞∑
r=0

r∑
s=0

(−1)s
(
m−1

2

r

)(
r

s

)
t2r−s (2x)s. (4.7)

Substituting r = (ℓ+s)/2 and using that therefore s = 2r−ℓ ⩽ r implies that r ⩽ ℓ for the upper limit of
the second sum, this becomes

=

∞∑
ℓ=0

[ ℓ∑
s=0

(−1)s
(
m−1

2(
ℓ+s
2

))(( ℓ+s
2

)
s

)
(2x)s︸ ︷︷ ︸

Pm
ℓ (x)

]
tℓ, (4.8)

and are called the associated Legendre polynomials.

The associated Legendre polynomials may also be calculated from Rodrigues’ derivative formula:

Pm
ℓ (x) := (−1)m (1−x2)m/2

2ℓ ℓ!

([ d

dx

]ℓ+m
(x2−1)ℓ

)
.

The following are some of the lowest-ℓ,m associated Legendre polynomials

P 0
0 (x) =

(1−x2)0/2

20 0!

([ d

dx

]0+0
(x2−1)0

)
= 1;

P 0
1 (x) =

(1−x2)0/2

21 1!

([ d

dx

]1+0
(x2−1)1

)
=

1

2

( d

dx
(x2−1)

)
=

1

2
(2x) = x = cos θ;

P 1
1 (x) = −

(1−x2)1/2

21 1!

([ d

dx

]1+1
(x2−1)1

)
= −
√
1−x2
2

( d2

dx2
(x2−1)

)
= −1

2

√
1− cos2 θ (2) = − sin θ;

P−1
1 (x) = −(1−x2)−1/2

21 1!

([ d

dx

]1−1
(x2−1)1

)
= − 1

2
√
1−x2

(x2−1) = +
1

2

√
1− cos2 θ (2) = sin θ.

Thus: with θ the azimuthal angle in spherical coordinates, the Cartesian coordinates are:

z = r P 0
1 (cos θ), y = ± r P∓1

1 (cos θ) sinϕ, x = ± r P∓1
1 (cos θ) cosϕ,

so that x±iy = ∓ r P±1
1 (cos θ) e±iϕ.
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