Howard University

WAShingTon, DC 20059
Department of Physics and Astronomy
$(202)-806-6245$ (Main OfFIce)

2355 Sixth St., NW, TKH Rm. 213
(202)-806-6245 (MAIN OFFICE)
(202)-806-5830 (FAX)
thubsch@howard.edu
$(202)-806-6267$

Mathematical Methods I

Student: \qquad
This is an "open Textbook (Arfken), open lecture notes" 90-min. in-class exam. For full credit, show all your work. The part of your solutions completed in class staple to the question sheet; then complete the rest of the Exam by Wednesday, Nov. $\mathbf{2 2}, \mathbf{2 0 1 0}, \mathbf{5 : 0 0} \mathbf{~ p m}$, for $2 / 3$ of the indicated credit; by signing, you attest that you have abided by this rule. Budget your time: do first what you are sure you know how; use shortcuts whenever possible (but be prepared to explain them afterwards, if necessary).

1. Equip the collection of real numbers in the interval $(-1,1)$ with the binary operation

$$
\begin{equation*}
v * v^{\prime}=\frac{v+v^{\prime}}{1+v v^{\prime}}, \quad v, v^{\prime} \in(-1,1) . \tag{1}
\end{equation*}
$$

a. Prove that $G=\{v \in(-1,1) ; *\}$ forms a group.
b. Explore the possibility of extending the group structure to thelimiting cases $\left(v . v^{\prime}\right)=(1,1),(1,-1)$ and $(-1,-1)$, which by the $v \leftrightarrow v^{\prime}$ symmetry will also include the $(-1,1)$ case.
2. Consider the equilateral triangle in the (x, y)-plane with vertices at $\left(-\frac{1}{2}, 0\right),\left(\frac{1}{2}, 0\right),\left(0, \frac{\sqrt{3}}{2}\right)$.
a. List all the symmetries of this triangle.
b. Construct the multiplication table of rotational symmetries and prove that they form a group.
c. Construct the complete multiplication table of symmetries and prove that they form a group.
3. Determine the convergence (absolute?, conditional?, uniform? - all that are appropriate) of:
a. Test $S \stackrel{\text { def }}{=} \sum_{n=0}^{\infty} \frac{(-1)^{n} n^{3}}{\left(1-n^{3}\right)}$.
b. Test $S(x) \stackrel{\text { def }}{=} \sum_{n=0}^{\infty} \frac{x^{n}(x+n)^{2 x}}{(2 n)!}$ for $x \geq 0$, and specify the range/interval/radius of convergence. $\quad[=10 \mathrm{ptt}$
c. Is the sum $\sum_{k=0}^{\infty}(-2)^{k}$ summable (in Hardy's "Pickwickian" sense)? If so, what is its value? [=10pt]
4. Consider the power series $S(x) \stackrel{\text { def }}{=} \sum_{k=0}^{\infty} \frac{x^{k}}{\left(k^{2}+1\right)(k+3)}$,
a. Determine the range and rate of convergence,
b. Improve the rate of convergence by at least one order.
5. Bonus Problem: Consider the matrix $\mathbb{M}=\left[\begin{array}{ll}2 & 3 \\ 4 & 3\end{array}\right]$.
a. Determine characteristic polynomial and eigenvalues of \mathbb{M}. $\quad\left[=10^{\mathrm{pt}]}\right.$
b. Determine the corresponding eigenvectors of \mathbb{M}.
c. Calculate $\sqrt{\mathbb{M}}$, i.e., a matrix the square of which equals \mathbb{M}. $\quad[=10 \mathrm{pt}]$

