

of your solutions completed in class staple to the question sheet; then complete the rest of the Exam by Wednesday, Nov. 22, 2010, 5:00 pm, for 2/3 of the indicated credit; by signing, you attest that you have abided by this rule. Budget your time: do first what you are sure you know how; use shortcuts whenever possible (but be prepared to explain them afterwards, if necessary).

1. Equip the collection of real numbers in the interval (-1, 1) with the binary operation

$$v * v' = \frac{v + v'}{1 + v v'}, \qquad v, v' \in (-1, 1) .$$
 (1)

a. Prove that $G = \{v \in (-1, 1); *\}$ forms a group.

b. Explore the possibility of extending the group structure to the limiting cases (v.v') = (1,1), (1,-1)and (-1, -1), which by the $v \leftrightarrow v'$ symmetry will also include the (-1, 1) case. [=10pt]

- **2.** Consider the equilateral triangle in the (x, y)-plane with vertices at $(-\frac{1}{2}, 0), (\frac{1}{2}, 0), (0, \frac{\sqrt{3}}{2})$.
 - a. List all the symmetries of this triangle.

b. Construct the multiplication table of rotational symmetries and prove that they form a group. [=10pt]

c. Construct the complete multiplication table of symmetries and prove that they form a group. [=10pt]

3. Determine the convergence (absolute?, conditional?, uniform? — all that are appropriate) of:

a. Test
$$S \stackrel{\text{def}}{=} \sum_{n=0}^{\infty} \frac{(-1)^n n^3}{(1-n^3)}.$$
 [=10pt]

b. Test
$$S(x) \stackrel{\text{def}}{=} \sum_{n=0}^{\infty} \frac{x^n (x+n)^{2x}}{(2n)!}$$
 for $x \ge 0$, and specify the range/interval/radius of convergence. [=10pt

c. Is the sum $\sum_{k=0}^{\infty} (-2)^k$ summable (in Hardy's "Pickwickian" sense)? If so, what is its value? [=10pt]

4. Consider the power series
$$S(x) \stackrel{\text{def}}{=} \sum_{k=0}^{\infty} \frac{x^k}{(k^2+1)(k+3)}$$
,

a. Determine the range and rate of convergence, [=10pt]

- **b.** Improve the rate of convergence by at least one order.
- **5. Bonus Problem:** Consider the matrix $\mathbb{M} = \begin{bmatrix} 2 & 3 \\ 4 & 3 \end{bmatrix}$.
 - a. Determine characteristic polynomial and eigenvalues of M. [=10pt]
 - **b.** Determine the corresponding eigenvectors of M. [=10pt]
 - c. Calculate $\sqrt{\mathbb{M}}$, *i.e.*, a matrix the square of which equals \mathbb{M} . [=10pt]

[=10pt]

[=10pt]

[=10pt]